gem5/dev/ide_disk.cc
Andrew Schultz 7bbb00d80f Fixes to the state machine to properly support software reset and to fix
PIO writes.  This was mainly related to not shadowing the status register
properly, and also not setting some of the status bits expected by the
operating system for the PIO write protocol.

--HG--
extra : convert_revision : fcdfd588be6e4f237aa6057889f0b3bdf4ea7631
2004-06-01 17:19:47 -04:00

1198 lines
34 KiB
C++

/*
* Copyright (c) 2003 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file
* Device model implementation for an IDE disk
*/
#include <cerrno>
#include <cstring>
#include <deque>
#include <string>
#include "arch/alpha/pmap.h"
#include "base/cprintf.hh" // csprintf
#include "base/trace.hh"
#include "dev/disk_image.hh"
#include "dev/ide_disk.hh"
#include "dev/ide_ctrl.hh"
#include "dev/tsunami.hh"
#include "dev/tsunami_pchip.hh"
#include "mem/functional_mem/physical_memory.hh"
#include "mem/bus/bus.hh"
#include "mem/bus/dma_interface.hh"
#include "mem/bus/pio_interface.hh"
#include "mem/bus/pio_interface_impl.hh"
#include "sim/builder.hh"
#include "sim/sim_object.hh"
#include "sim/universe.hh"
using namespace std;
IdeDisk::IdeDisk(const string &name, DiskImage *img, PhysicalMemory *phys,
int id, int delay)
: SimObject(name), ctrl(NULL), image(img), physmem(phys),
dmaTransferEvent(this), dmaReadWaitEvent(this),
dmaWriteWaitEvent(this), dmaPrdReadEvent(this),
dmaReadEvent(this), dmaWriteEvent(this)
{
// Reset the device state
reset(id);
// calculate disk delay in microseconds
diskDelay = (delay * ticksPerSecond / 100000);
// fill out the drive ID structure
memset(&driveID, 0, sizeof(struct hd_driveid));
// Calculate LBA and C/H/S values
uint16_t cylinders;
uint8_t heads;
uint8_t sectors;
uint32_t lba_size = image->size();
if (lba_size >= 16383*16*63) {
cylinders = 16383;
heads = 16;
sectors = 63;
} else {
if (lba_size >= 63)
sectors = 63;
else
sectors = lba_size;
if ((lba_size / sectors) >= 16)
heads = 16;
else
heads = (lba_size / sectors);
cylinders = lba_size / (heads * sectors);
}
// Setup the model name
sprintf((char *)driveID.model, "5MI EDD si k");
// Set the maximum multisector transfer size
driveID.max_multsect = MAX_MULTSECT;
// IORDY supported, IORDY disabled, LBA enabled, DMA enabled
driveID.capability = 0x7;
// UDMA support, EIDE support
driveID.field_valid = 0x6;
// Setup default C/H/S settings
driveID.cyls = cylinders;
driveID.sectors = sectors;
driveID.heads = heads;
// Setup the current multisector transfer size
driveID.multsect = MAX_MULTSECT;
driveID.multsect_valid = 0x1;
// Number of sectors on disk
driveID.lba_capacity = lba_size;
// Multiword DMA mode 2 and below supported
driveID.dma_mword = 0x400;
// Set PIO mode 4 and 3 supported
driveID.eide_pio_modes = 0x3;
// Set DMA mode 4 and below supported
driveID.dma_ultra = 0x10;
// Statically set hardware config word
driveID.hw_config = 0x4001;
}
IdeDisk::~IdeDisk()
{
// destroy the data buffer
delete [] dataBuffer;
}
void
IdeDisk::reset(int id)
{
// initialize the data buffer and shadow registers
dataBuffer = new uint8_t[MAX_DMA_SIZE];
memset(dataBuffer, 0, MAX_DMA_SIZE);
memset(&cmdReg, 0, sizeof(CommandReg_t));
memset(&curPrd.entry, 0, sizeof(PrdEntry_t));
dmaInterfaceBytes = 0;
curPrdAddr = 0;
curSector = 0;
cmdBytes = 0;
cmdBytesLeft = 0;
drqBytesLeft = 0;
dmaRead = false;
intrPending = false;
// set the device state to idle
dmaState = Dma_Idle;
if (id == DEV0) {
devState = Device_Idle_S;
devID = DEV0;
} else if (id == DEV1) {
devState = Device_Idle_NS;
devID = DEV1;
} else {
panic("Invalid device ID: %#x\n", id);
}
// set the device ready bit
status = STATUS_DRDY_BIT;
}
////
// Utility functions
////
Addr
IdeDisk::pciToDma(Addr pciAddr)
{
if (ctrl)
return ctrl->tsunami->pchip->translatePciToDma(pciAddr);
else
panic("Access to unset controller!\n");
}
uint32_t
IdeDisk::bytesInDmaPage(Addr curAddr, uint32_t bytesLeft)
{
uint32_t bytesInPage = 0;
// First calculate how many bytes could be in the page
if (bytesLeft > ALPHA_PGBYTES)
bytesInPage = ALPHA_PGBYTES;
else
bytesInPage = bytesLeft;
// Next, see if we have crossed a page boundary, and adjust
Addr upperBound = curAddr + bytesInPage;
Addr pageBound = alpha_trunc_page(curAddr) + ALPHA_PGBYTES;
assert(upperBound >= curAddr && "DMA read wraps around address space!\n");
if (upperBound >= pageBound)
bytesInPage = pageBound - curAddr;
return bytesInPage;
}
////
// Device registers read/write
////
void
IdeDisk::read(const Addr &offset, bool byte, bool cmdBlk, uint8_t *data)
{
DevAction_t action = ACT_NONE;
if (cmdBlk) {
if (offset < 0 || offset > sizeof(CommandReg_t))
panic("Invalid disk command register offset: %#x\n", offset);
if (!byte && offset != DATA_OFFSET)
panic("Invalid 16-bit read, only allowed on data reg\n");
if (!byte)
*(uint16_t *)data = *(uint16_t *)&cmdReg.data0;
else
*data = ((uint8_t *)&cmdReg)[offset];
// determine if an action needs to be taken on the state machine
if (offset == STATUS_OFFSET) {
action = ACT_STAT_READ;
*data = status; // status is in a shadow, explicity copy
} else if (offset == DATA_OFFSET) {
if (byte)
action = ACT_DATA_READ_BYTE;
else
action = ACT_DATA_READ_SHORT;
}
} else {
if (offset != ALTSTAT_OFFSET)
panic("Invalid disk control register offset: %#x\n", offset);
if (!byte)
panic("Invalid 16-bit read from control block\n");
*data = status;
}
if (action != ACT_NONE)
updateState(action);
}
void
IdeDisk::write(const Addr &offset, bool byte, bool cmdBlk, const uint8_t *data)
{
DevAction_t action = ACT_NONE;
if (cmdBlk) {
if (offset < 0 || offset > sizeof(CommandReg_t))
panic("Invalid disk command register offset: %#x\n", offset);
if (!byte && offset != DATA_OFFSET)
panic("Invalid 16-bit write, only allowed on data reg\n");
if (!byte)
*((uint16_t *)&cmdReg.data0) = *(uint16_t *)data;
else
((uint8_t *)&cmdReg)[offset] = *data;
// determine if an action needs to be taken on the state machine
if (offset == COMMAND_OFFSET) {
action = ACT_CMD_WRITE;
} else if (offset == DATA_OFFSET) {
if (byte)
action = ACT_DATA_WRITE_BYTE;
else
action = ACT_DATA_WRITE_SHORT;
} else if (offset == SELECT_OFFSET) {
action = ACT_SELECT_WRITE;
}
} else {
if (offset != CONTROL_OFFSET)
panic("Invalid disk control register offset: %#x\n", offset);
if (!byte)
panic("Invalid 16-bit write to control block\n");
if (*data & CONTROL_RST_BIT) {
// force the device into the reset state
devState = Device_Srst;
action = ACT_SRST_SET;
} else if (devState == Device_Srst && !(*data & CONTROL_RST_BIT)) {
action = ACT_SRST_CLEAR;
}
nIENBit = (*data & CONTROL_IEN_BIT) ? true : false;
}
if (action != ACT_NONE)
updateState(action);
}
////
// Perform DMA transactions
////
void
IdeDisk::doDmaTransfer()
{
if (dmaState != Dma_Transfer || devState != Transfer_Data_Dma)
panic("Inconsistent DMA transfer state: dmaState = %d devState = %d\n",
dmaState, devState);
// first read the current PRD
if (dmaInterface) {
if (dmaInterface->busy()) {
// reschedule after waiting period
dmaTransferEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
return;
}
dmaInterface->doDMA(Read, curPrdAddr, sizeof(PrdEntry_t), curTick,
&dmaPrdReadEvent);
} else {
dmaPrdReadDone();
}
}
void
IdeDisk::dmaPrdReadDone()
{
// actually copy the PRD from physical memory
memcpy((void *)&curPrd.entry,
physmem->dma_addr(curPrdAddr, sizeof(PrdEntry_t)),
sizeof(PrdEntry_t));
curPrdAddr += sizeof(PrdEntry_t);
if (dmaRead)
doDmaRead();
else
doDmaWrite();
}
void
IdeDisk::doDmaRead()
{
Tick totalDiskDelay = diskDelay + (curPrd.getByteCount() / SectorSize);
if (dmaInterface) {
if (dmaInterface->busy()) {
// reschedule after waiting period
dmaReadWaitEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
return;
}
Addr dmaAddr = pciToDma(curPrd.getBaseAddr());
uint32_t bytesInPage = bytesInDmaPage(curPrd.getBaseAddr(),
(uint32_t)curPrd.getByteCount());
dmaInterfaceBytes = bytesInPage;
dmaInterface->doDMA(Read, dmaAddr, bytesInPage,
curTick + totalDiskDelay, &dmaReadEvent);
} else {
// schedule dmaReadEvent with sectorDelay (dmaReadDone)
dmaReadEvent.schedule(curTick + totalDiskDelay);
}
}
void
IdeDisk::dmaReadDone()
{
Addr curAddr = 0, dmaAddr = 0;
uint32_t bytesWritten = 0, bytesInPage = 0, bytesLeft = 0;
// continue to use the DMA interface until all pages are read
if (dmaInterface && (dmaInterfaceBytes < curPrd.getByteCount())) {
// see if the interface is busy
if (dmaInterface->busy()) {
// reschedule after waiting period
dmaReadEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
return;
}
uint32_t bytesLeft = curPrd.getByteCount() - dmaInterfaceBytes;
curAddr = curPrd.getBaseAddr() + dmaInterfaceBytes;
dmaAddr = pciToDma(curAddr);
bytesInPage = bytesInDmaPage(curAddr, bytesLeft);
dmaInterfaceBytes += bytesInPage;
dmaInterface->doDMA(Read, dmaAddr, bytesInPage,
curTick, &dmaReadEvent);
return;
}
// set initial address
curAddr = curPrd.getBaseAddr();
// clear out the data buffer
memset(dataBuffer, 0, MAX_DMA_SIZE);
// read the data from memory via DMA into a data buffer
while (bytesWritten < curPrd.getByteCount()) {
if (cmdBytesLeft <= 0)
panic("DMA data is larger than # of sectors specified\n");
dmaAddr = pciToDma(curAddr);
// calculate how many bytes are in the current page
bytesLeft = curPrd.getByteCount() - bytesWritten;
bytesInPage = bytesInDmaPage(curAddr, bytesLeft);
// copy the data from memory into the data buffer
memcpy((void *)(dataBuffer + bytesWritten),
physmem->dma_addr(dmaAddr, bytesInPage),
bytesInPage);
curAddr += bytesInPage;
bytesWritten += bytesInPage;
cmdBytesLeft -= bytesInPage;
}
// write the data to the disk image
for (bytesWritten = 0;
bytesWritten < curPrd.getByteCount();
bytesWritten += SectorSize) {
writeDisk(curSector++, (uint8_t *)(dataBuffer + bytesWritten));
}
#if 0
// actually copy the data from memory to data buffer
Addr dmaAddr =
ctrl->tsunami->pchip->translatePciToDma(curPrd.getBaseAddr());
memcpy((void *)dataBuffer,
physmem->dma_addr(dmaAddr, curPrd.getByteCount()),
curPrd.getByteCount());
uint32_t bytesWritten = 0;
while (bytesWritten < curPrd.getByteCount()) {
if (cmdBytesLeft <= 0)
panic("DMA data is larger than # sectors specified\n");
writeDisk(curSector++, (uint8_t *)(dataBuffer + bytesWritten));
bytesWritten += SectorSize;
cmdBytesLeft -= SectorSize;
}
#endif
// check for the EOT
if (curPrd.getEOT()){
assert(cmdBytesLeft == 0);
dmaState = Dma_Idle;
updateState(ACT_DMA_DONE);
} else {
doDmaTransfer();
}
}
void
IdeDisk::doDmaWrite()
{
Tick totalDiskDelay = diskDelay + (curPrd.getByteCount() / SectorSize);
if (dmaInterface) {
if (dmaInterface->busy()) {
// reschedule after waiting period
dmaWriteWaitEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
return;
}
Addr dmaAddr = pciToDma(curPrd.getBaseAddr());
uint32_t bytesInPage = bytesInDmaPage(curPrd.getBaseAddr(),
(uint32_t)curPrd.getByteCount());
dmaInterfaceBytes = bytesInPage;
dmaInterface->doDMA(WriteInvalidate, dmaAddr,
bytesInPage, curTick + totalDiskDelay,
&dmaWriteEvent);
} else {
// schedule event with disk delay (dmaWriteDone)
dmaWriteEvent.schedule(curTick + totalDiskDelay);
}
}
void
IdeDisk::dmaWriteDone()
{
Addr curAddr = 0, pageAddr = 0, dmaAddr = 0;
uint32_t bytesRead = 0, bytesInPage = 0;
// continue to use the DMA interface until all pages are read
if (dmaInterface && (dmaInterfaceBytes < curPrd.getByteCount())) {
// see if the interface is busy
if (dmaInterface->busy()) {
// reschedule after waiting period
dmaWriteEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
return;
}
uint32_t bytesLeft = curPrd.getByteCount() - dmaInterfaceBytes;
curAddr = curPrd.getBaseAddr() + dmaInterfaceBytes;
dmaAddr = pciToDma(curAddr);
bytesInPage = bytesInDmaPage(curAddr, bytesLeft);
dmaInterfaceBytes += bytesInPage;
dmaInterface->doDMA(WriteInvalidate, dmaAddr,
bytesInPage, curTick,
&dmaWriteEvent);
return;
}
// setup the initial page and DMA address
curAddr = curPrd.getBaseAddr();
pageAddr = alpha_trunc_page(curAddr);
dmaAddr = pciToDma(curAddr);
// clear out the data buffer
memset(dataBuffer, 0, MAX_DMA_SIZE);
while (bytesRead < curPrd.getByteCount()) {
// see if we have crossed into a new page
if (pageAddr != alpha_trunc_page(curAddr)) {
// write the data to memory
memcpy(physmem->dma_addr(dmaAddr, bytesInPage),
(void *)(dataBuffer + (bytesRead - bytesInPage)),
bytesInPage);
// update the DMA address and page address
pageAddr = alpha_trunc_page(curAddr);
dmaAddr = pciToDma(curAddr);
bytesInPage = 0;
}
if (cmdBytesLeft <= 0)
panic("DMA requested data is larger than # sectors specified\n");
readDisk(curSector++, (uint8_t *)(dataBuffer + bytesRead));
curAddr += SectorSize;
bytesRead += SectorSize;
bytesInPage += SectorSize;
cmdBytesLeft -= SectorSize;
}
// write the last page worth read to memory
if (bytesInPage != 0) {
memcpy(physmem->dma_addr(dmaAddr, bytesInPage),
(void *)(dataBuffer + (bytesRead - bytesInPage)),
bytesInPage);
}
#if 0
Addr dmaAddr = ctrl->tsunami->pchip->
translatePciToDma(curPrd.getBaseAddr());
memcpy(physmem->dma_addr(dmaAddr, curPrd.getByteCount()),
(void *)dataBuffer, curPrd.getByteCount());
#endif
// check for the EOT
if (curPrd.getEOT()) {
assert(cmdBytesLeft == 0);
dmaState = Dma_Idle;
updateState(ACT_DMA_DONE);
} else {
doDmaTransfer();
}
}
////
// Disk utility routines
///
void
IdeDisk::readDisk(uint32_t sector, uint8_t *data)
{
uint32_t bytesRead = image->read(data, sector);
if (bytesRead != SectorSize)
panic("Can't read from %s. Only %d of %d read. errno=%d\n",
name(), bytesRead, SectorSize, errno);
}
void
IdeDisk::writeDisk(uint32_t sector, uint8_t *data)
{
uint32_t bytesWritten = image->write(data, sector);
if (bytesWritten != SectorSize)
panic("Can't write to %s. Only %d of %d written. errno=%d\n",
name(), bytesWritten, SectorSize, errno);
}
////
// Setup and handle commands
////
void
IdeDisk::startDma(const uint32_t &prdTableBase)
{
if (dmaState != Dma_Start)
panic("Inconsistent DMA state, should be in Dma_Start!\n");
if (devState != Transfer_Data_Dma)
panic("Inconsistent device state for DMA start!\n");
curPrdAddr = pciToDma((Addr)prdTableBase);
dmaState = Dma_Transfer;
// schedule dma transfer (doDmaTransfer)
dmaTransferEvent.schedule(curTick + 1);
}
void
IdeDisk::abortDma()
{
if (dmaState == Dma_Idle)
panic("Inconsistent DMA state, should be in Dma_Start or Dma_Transfer!\n");
if (devState != Transfer_Data_Dma && devState != Prepare_Data_Dma)
panic("Inconsistent device state, should be in Transfer or Prepare!\n");
updateState(ACT_CMD_ERROR);
}
void
IdeDisk::startCommand()
{
DevAction_t action = ACT_NONE;
uint32_t size = 0;
dmaRead = false;
// Decode commands
switch (cmdReg.command) {
// Supported non-data commands
case WIN_READ_NATIVE_MAX:
size = image->size() - 1;
cmdReg.sec_num = (size & 0xff);
cmdReg.cyl_low = ((size & 0xff00) >> 8);
cmdReg.cyl_high = ((size & 0xff0000) >> 16);
cmdReg.head = ((size & 0xf000000) >> 24);
devState = Command_Execution;
action = ACT_CMD_COMPLETE;
break;
case WIN_RECAL:
case WIN_SPECIFY:
case WIN_STANDBYNOW1:
case WIN_FLUSH_CACHE:
case WIN_VERIFY:
case WIN_SEEK:
case WIN_SETFEATURES:
case WIN_SETMULT:
devState = Command_Execution;
action = ACT_CMD_COMPLETE;
break;
// Supported PIO data-in commands
case WIN_IDENTIFY:
cmdBytes = cmdBytesLeft = sizeof(struct hd_driveid);
devState = Prepare_Data_In;
action = ACT_DATA_READY;
break;
case WIN_MULTREAD:
case WIN_READ:
if (!(cmdReg.drive & DRIVE_LBA_BIT))
panic("Attempt to perform CHS access, only supports LBA\n");
if (cmdReg.sec_count == 0)
cmdBytes = cmdBytesLeft = (256 * SectorSize);
else
cmdBytes = cmdBytesLeft = (cmdReg.sec_count * SectorSize);
curSector = getLBABase();
/** @todo make this a scheduled event to simulate disk delay */
devState = Prepare_Data_In;
action = ACT_DATA_READY;
break;
// Supported PIO data-out commands
case WIN_MULTWRITE:
case WIN_WRITE:
if (!(cmdReg.drive & DRIVE_LBA_BIT))
panic("Attempt to perform CHS access, only supports LBA\n");
if (cmdReg.sec_count == 0)
cmdBytes = cmdBytesLeft = (256 * SectorSize);
else
cmdBytes = cmdBytesLeft = (cmdReg.sec_count * SectorSize);
curSector = getLBABase();
devState = Prepare_Data_Out;
action = ACT_DATA_READY;
break;
// Supported DMA commands
case WIN_WRITEDMA:
dmaRead = true; // a write to the disk is a DMA read from memory
case WIN_READDMA:
if (!(cmdReg.drive & DRIVE_LBA_BIT))
panic("Attempt to perform CHS access, only supports LBA\n");
if (cmdReg.sec_count == 0)
cmdBytes = cmdBytesLeft = (256 * SectorSize);
else
cmdBytes = cmdBytesLeft = (cmdReg.sec_count * SectorSize);
curSector = getLBABase();
devState = Prepare_Data_Dma;
action = ACT_DMA_READY;
break;
default:
panic("Unsupported ATA command: %#x\n", cmdReg.command);
}
if (action != ACT_NONE) {
// set the BSY bit
status |= STATUS_BSY_BIT;
// clear the DRQ bit
status &= ~STATUS_DRQ_BIT;
// clear the DF bit
status &= ~STATUS_DF_BIT;
updateState(action);
}
}
////
// Handle setting and clearing interrupts
////
void
IdeDisk::intrPost()
{
if (intrPending)
panic("Attempt to post an interrupt with one pending\n");
intrPending = true;
// talk to controller to set interrupt
if (ctrl)
ctrl->intrPost();
}
void
IdeDisk::intrClear()
{
if (!intrPending)
panic("Attempt to clear a non-pending interrupt\n");
intrPending = false;
// talk to controller to clear interrupt
if (ctrl)
ctrl->intrClear();
}
////
// Manage the device internal state machine
////
void
IdeDisk::updateState(DevAction_t action)
{
switch (devState) {
case Device_Srst:
if (action == ACT_SRST_SET) {
// set the BSY bit
status |= STATUS_BSY_BIT;
} else if (action == ACT_SRST_CLEAR) {
// clear the BSY bit
status &= ~STATUS_BSY_BIT;
// reset the device state
reset(devID);
}
break;
case Device_Idle_S:
if (action == ACT_SELECT_WRITE && !isDEVSelect()) {
devState = Device_Idle_NS;
} else if (action == ACT_CMD_WRITE) {
startCommand();
}
break;
case Device_Idle_SI:
if (action == ACT_SELECT_WRITE && !isDEVSelect()) {
devState = Device_Idle_NS;
intrClear();
} else if (action == ACT_STAT_READ || isIENSet()) {
devState = Device_Idle_S;
intrClear();
} else if (action == ACT_CMD_WRITE) {
intrClear();
startCommand();
}
break;
case Device_Idle_NS:
if (action == ACT_SELECT_WRITE && isDEVSelect()) {
if (!isIENSet() && intrPending) {
devState = Device_Idle_SI;
intrPost();
}
if (isIENSet() || !intrPending) {
devState = Device_Idle_S;
}
}
break;
case Command_Execution:
if (action == ACT_CMD_COMPLETE) {
// clear the BSY bit
setComplete();
if (!isIENSet()) {
devState = Device_Idle_SI;
intrPost();
} else {
devState = Device_Idle_S;
}
}
break;
case Prepare_Data_In:
if (action == ACT_CMD_ERROR) {
// clear the BSY bit
setComplete();
if (!isIENSet()) {
devState = Device_Idle_SI;
intrPost();
} else {
devState = Device_Idle_S;
}
} else if (action == ACT_DATA_READY) {
// clear the BSY bit
status &= ~STATUS_BSY_BIT;
// set the DRQ bit
status |= STATUS_DRQ_BIT;
// copy the data into the data buffer
if (cmdReg.command == WIN_IDENTIFY) {
// Reset the drqBytes for this block
drqBytesLeft = sizeof(struct hd_driveid);
memcpy((void *)dataBuffer, (void *)&driveID,
sizeof(struct hd_driveid));
} else {
// Reset the drqBytes for this block
drqBytesLeft = SectorSize;
readDisk(curSector++, dataBuffer);
}
// put the first two bytes into the data register
memcpy((void *)&cmdReg.data0, (void *)dataBuffer,
sizeof(uint16_t));
if (!isIENSet()) {
devState = Data_Ready_INTRQ_In;
intrPost();
} else {
devState = Transfer_Data_In;
}
}
break;
case Data_Ready_INTRQ_In:
if (action == ACT_STAT_READ) {
devState = Transfer_Data_In;
intrClear();
}
break;
case Transfer_Data_In:
if (action == ACT_DATA_READ_BYTE || action == ACT_DATA_READ_SHORT) {
if (action == ACT_DATA_READ_BYTE) {
panic("DEBUG: READING DATA ONE BYTE AT A TIME!\n");
} else {
drqBytesLeft -= 2;
cmdBytesLeft -= 2;
// copy next short into data registers
if (drqBytesLeft)
memcpy((void *)&cmdReg.data0,
(void *)&dataBuffer[SectorSize - drqBytesLeft],
sizeof(uint16_t));
}
if (drqBytesLeft == 0) {
if (cmdBytesLeft == 0) {
// Clear the BSY bit
setComplete();
devState = Device_Idle_S;
} else {
devState = Prepare_Data_In;
// set the BSY_BIT
status |= STATUS_BSY_BIT;
// clear the DRQ_BIT
status &= ~STATUS_DRQ_BIT;
/** @todo change this to a scheduled event to simulate
disk delay */
updateState(ACT_DATA_READY);
}
}
}
break;
case Prepare_Data_Out:
if (action == ACT_CMD_ERROR || cmdBytesLeft == 0) {
// clear the BSY bit
setComplete();
if (!isIENSet()) {
devState = Device_Idle_SI;
intrPost();
} else {
devState = Device_Idle_S;
}
} else if (action == ACT_DATA_READY && cmdBytesLeft != 0) {
// clear the BSY bit
status &= ~STATUS_BSY_BIT;
// set the DRQ bit
status |= STATUS_DRQ_BIT;
// clear the data buffer to get it ready for writes
memset(dataBuffer, 0, MAX_DMA_SIZE);
// reset the drqBytes for this block
drqBytesLeft = SectorSize;
if (cmdBytesLeft == cmdBytes || isIENSet()) {
devState = Transfer_Data_Out;
} else {
devState = Data_Ready_INTRQ_Out;
intrPost();
}
}
break;
case Data_Ready_INTRQ_Out:
if (action == ACT_STAT_READ) {
devState = Transfer_Data_Out;
intrClear();
}
break;
case Transfer_Data_Out:
if (action == ACT_DATA_WRITE_BYTE ||
action == ACT_DATA_WRITE_SHORT) {
if (action == ACT_DATA_READ_BYTE) {
panic("DEBUG: WRITING DATA ONE BYTE AT A TIME!\n");
} else {
// copy the latest short into the data buffer
memcpy((void *)&dataBuffer[SectorSize - drqBytesLeft],
(void *)&cmdReg.data0,
sizeof(uint16_t));
drqBytesLeft -= 2;
cmdBytesLeft -= 2;
}
if (drqBytesLeft == 0) {
// copy the block to the disk
writeDisk(curSector++, dataBuffer);
// set the BSY bit
status |= STATUS_BSY_BIT;
// set the seek bit
status |= STATUS_SEEK_BIT;
// clear the DRQ bit
status &= ~STATUS_DRQ_BIT;
devState = Prepare_Data_Out;
/** @todo change this to a scheduled event to simulate
disk delay */
updateState(ACT_DATA_READY);
}
}
break;
case Prepare_Data_Dma:
if (action == ACT_CMD_ERROR) {
// clear the BSY bit
setComplete();
if (!isIENSet()) {
devState = Device_Idle_SI;
intrPost();
} else {
devState = Device_Idle_S;
}
} else if (action == ACT_DMA_READY) {
// clear the BSY bit
status &= ~STATUS_BSY_BIT;
// set the DRQ bit
status |= STATUS_DRQ_BIT;
devState = Transfer_Data_Dma;
if (dmaState != Dma_Idle)
panic("Inconsistent DMA state, should be Dma_Idle\n");
dmaState = Dma_Start;
// wait for the write to the DMA start bit
}
break;
case Transfer_Data_Dma:
if (action == ACT_CMD_ERROR || action == ACT_DMA_DONE) {
// clear the BSY bit
setComplete();
// set the seek bit
status |= STATUS_SEEK_BIT;
// clear the controller state for DMA transfer
ctrl->setDmaComplete(this);
if (!isIENSet()) {
devState = Device_Idle_SI;
intrPost();
} else {
devState = Device_Idle_S;
}
}
break;
default:
panic("Unknown IDE device state: %#x\n", devState);
}
}
void
IdeDisk::serialize(ostream &os)
{
// Check all outstanding events to see if they are scheduled
// these are all mutually exclusive
Tick reschedule = 0;
Events_t event = None;
if (dmaTransferEvent.scheduled()) {
reschedule = dmaTransferEvent.when();
event = Transfer;
} else if (dmaReadWaitEvent.scheduled()) {
reschedule = dmaReadWaitEvent.when();
event = ReadWait;
} else if (dmaWriteWaitEvent.scheduled()) {
reschedule = dmaWriteWaitEvent.when();
event = WriteWait;
} else if (dmaPrdReadEvent.scheduled()) {
reschedule = dmaPrdReadEvent.when();
event = PrdRead;
} else if (dmaReadEvent.scheduled()) {
reschedule = dmaReadEvent.when();
event = DmaRead;
} else if (dmaWriteEvent.scheduled()) {
reschedule = dmaWriteEvent.when();
event = DmaWrite;
}
SERIALIZE_SCALAR(reschedule);
SERIALIZE_ENUM(event);
// Serialize device registers
SERIALIZE_SCALAR(cmdReg.data0);
SERIALIZE_SCALAR(cmdReg.data1);
SERIALIZE_SCALAR(cmdReg.sec_count);
SERIALIZE_SCALAR(cmdReg.sec_num);
SERIALIZE_SCALAR(cmdReg.cyl_low);
SERIALIZE_SCALAR(cmdReg.cyl_high);
SERIALIZE_SCALAR(cmdReg.drive);
SERIALIZE_SCALAR(status);
SERIALIZE_SCALAR(nIENBit);
SERIALIZE_SCALAR(devID);
// Serialize the PRD related information
SERIALIZE_SCALAR(curPrd.entry.baseAddr);
SERIALIZE_SCALAR(curPrd.entry.byteCount);
SERIALIZE_SCALAR(curPrd.entry.endOfTable);
SERIALIZE_SCALAR(curPrdAddr);
// Serialize current transfer related information
SERIALIZE_SCALAR(cmdBytesLeft);
SERIALIZE_SCALAR(cmdBytes);
SERIALIZE_SCALAR(drqBytesLeft);
SERIALIZE_SCALAR(curSector);
SERIALIZE_SCALAR(dmaRead);
SERIALIZE_SCALAR(dmaInterfaceBytes);
SERIALIZE_SCALAR(intrPending);
SERIALIZE_ENUM(devState);
SERIALIZE_ENUM(dmaState);
SERIALIZE_ARRAY(dataBuffer, MAX_DMA_SIZE);
}
void
IdeDisk::unserialize(Checkpoint *cp, const string &section)
{
// Reschedule events that were outstanding
// these are all mutually exclusive
Tick reschedule = 0;
Events_t event = None;
UNSERIALIZE_SCALAR(reschedule);
UNSERIALIZE_ENUM(event);
switch (event) {
case None : break;
case Transfer : dmaTransferEvent.schedule(reschedule); break;
case ReadWait : dmaReadWaitEvent.schedule(reschedule); break;
case WriteWait : dmaWriteWaitEvent.schedule(reschedule); break;
case PrdRead : dmaPrdReadEvent.schedule(reschedule); break;
case DmaRead : dmaReadEvent.schedule(reschedule); break;
case DmaWrite : dmaWriteEvent.schedule(reschedule); break;
}
// Unserialize device registers
UNSERIALIZE_SCALAR(cmdReg.data0);
UNSERIALIZE_SCALAR(cmdReg.data1);
UNSERIALIZE_SCALAR(cmdReg.sec_count);
UNSERIALIZE_SCALAR(cmdReg.sec_num);
UNSERIALIZE_SCALAR(cmdReg.cyl_low);
UNSERIALIZE_SCALAR(cmdReg.cyl_high);
UNSERIALIZE_SCALAR(cmdReg.drive);
UNSERIALIZE_SCALAR(status);
UNSERIALIZE_SCALAR(nIENBit);
UNSERIALIZE_SCALAR(devID);
// Unserialize the PRD related information
UNSERIALIZE_SCALAR(curPrd.entry.baseAddr);
UNSERIALIZE_SCALAR(curPrd.entry.byteCount);
UNSERIALIZE_SCALAR(curPrd.entry.endOfTable);
UNSERIALIZE_SCALAR(curPrdAddr);
// Unserialize current transfer related information
UNSERIALIZE_SCALAR(cmdBytes);
UNSERIALIZE_SCALAR(cmdBytesLeft);
UNSERIALIZE_SCALAR(drqBytesLeft);
UNSERIALIZE_SCALAR(curSector);
UNSERIALIZE_SCALAR(dmaRead);
UNSERIALIZE_SCALAR(dmaInterfaceBytes);
UNSERIALIZE_SCALAR(intrPending);
UNSERIALIZE_ENUM(devState);
UNSERIALIZE_ENUM(dmaState);
UNSERIALIZE_ARRAY(dataBuffer, MAX_DMA_SIZE);
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
BEGIN_DECLARE_SIM_OBJECT_PARAMS(IdeDisk)
SimObjectParam<DiskImage *> image;
SimObjectParam<PhysicalMemory *> physmem;
Param<int> driveID;
Param<int> disk_delay;
END_DECLARE_SIM_OBJECT_PARAMS(IdeDisk)
BEGIN_INIT_SIM_OBJECT_PARAMS(IdeDisk)
INIT_PARAM(image, "Disk image"),
INIT_PARAM(physmem, "Physical memory"),
INIT_PARAM(driveID, "Drive ID (0=master 1=slave)"),
INIT_PARAM_DFLT(disk_delay, "Fixed disk delay in microseconds", 1)
END_INIT_SIM_OBJECT_PARAMS(IdeDisk)
CREATE_SIM_OBJECT(IdeDisk)
{
return new IdeDisk(getInstanceName(), image, physmem, driveID,
disk_delay);
}
REGISTER_SIM_OBJECT("IdeDisk", IdeDisk)
#endif //DOXYGEN_SHOULD_SKIP_THIS