gem5/cpu/exec_context.hh
Kevin Lim a896960cbf FastCPU model added. It's very similar to the SimpleCPU, just without a lot of the stats tracking.
Also various changes to make the CPU model less ISA dependent, which includes moving the code that checks for interrupts up to the ISA level, moving code that zeroes the zero registers up to the ISA level, and removing opcode and ra from the regfile.

arch/alpha/alpha_memory.cc:
    The regfile has been changed so it no longer has the opcode and ra.  Instead the xc holds the actual instruction, and from there the opcode and ra can be obtained with OPCODE() and RA().
arch/alpha/ev5.cc:
    Moved code that once existed within simpleCPU to ev5, and templatized it.
    This way the CPU models can call processInterrupts and the ISA specific interrupt handling is left to the ISA's code.
    Also moved ISA specific zero registers from simpleCPU to here.
arch/alpha/ev5.hh:
    Added macros for obtaining the opcode and ra from the instruction itself, as there is no longer opcode or ra in the regfile.
arch/alpha/isa_desc:
    Added in declarations for the FastCPU model.
arch/alpha/isa_traits.hh:
    Removed opcode and ra from the regfile.  The xc now holds the actual instruction, and the opcode and ra can be obtained through it.
    Also added the declaration for the templated zeroRegisters() function, which will set the zero registers to 0.
arch/isa_parser.py:
    Added in FastCPUExecContext so it will generate code for the FastCPU model as well.
cpu/exec_context.cc:
    Added in a more generic trap function so "ev5_trap" doesn't need to be called.  It currently still calls the old method, with plans for making this ISA dependent in the future.
cpu/exec_context.hh:
    Exec context now has the instruction within it.  Also added methods for exec context to read an instruction from memory, return the current instruction, and set the instruction if needed.
    Also has declaration for more generic trap() function.
cpu/simple_cpu/simple_cpu.cc:
    Removed references to opcode and ra, and instead sets the xc's instruction with the fetched instruction.
cpu/static_inst.hh:
    Added declaration for execute() using FastCPUExecContext.

--HG--
extra : convert_revision : 0441ea3700ac50b733e485395d4dd4ac83666f92
2004-05-27 17:46:16 -04:00

467 lines
13 KiB
C++

/*
* Copyright (c) 2003 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __EXEC_CONTEXT_HH__
#define __EXEC_CONTEXT_HH__
#include "sim/host.hh"
#include "mem/mem_req.hh"
#include "mem/functional_mem/functional_memory.hh"
#include "sim/serialize.hh"
// forward declaration: see functional_memory.hh
class FunctionalMemory;
class PhysicalMemory;
class BaseCPU;
#ifdef FULL_SYSTEM
#include "targetarch/alpha_memory.hh"
class MemoryController;
#include "kern/tru64/kernel_stats.hh"
#include "sim/system.hh"
#include "sim/sw_context.hh"
#else // !FULL_SYSTEM
#include "sim/process.hh"
#endif // FULL_SYSTEM
//
// The ExecContext object represents a functional context for
// instruction execution. It incorporates everything required for
// architecture-level functional simulation of a single thread.
//
class ExecContext
{
public:
enum Status
{
/// Initialized but not running yet. All CPUs start in
/// this state, but most transition to Active on cycle 1.
/// In MP or SMT systems, non-primary contexts will stay
/// in this state until a thread is assigned to them.
Unallocated,
/// Running. Instructions should be executed only when
/// the context is in this state.
Active,
/// Temporarily inactive. Entered while waiting for
/// synchronization, etc.
Suspended,
/// Permanently shut down. Entered when target executes
/// m5exit pseudo-instruction. When all contexts enter
/// this state, the simulation will terminate.
Halted
};
private:
Status _status;
public:
Status status() const { return _status; }
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
void activate(int delay = 1);
/// Set the status to Suspended.
void suspend();
/// Set the status to Unallocated.
void deallocate();
/// Set the status to Halted.
void halt();
#ifdef FULL_SYSTEM
public:
KernelStats kernelStats;
#endif
public:
RegFile regs; // correct-path register context
// pointer to CPU associated with this context
BaseCPU *cpu;
// Current instruction
MachInst inst;
// Index of hardware thread context on the CPU that this represents.
int thread_num;
// ID of this context w.r.t. the System or Process object to which
// it belongs. For full-system mode, this is the system CPU ID.
int cpu_id;
#ifdef FULL_SYSTEM
FunctionalMemory *mem;
AlphaITB *itb;
AlphaDTB *dtb;
System *system;
// the following two fields are redundant, since we can always
// look them up through the system pointer, but we'll leave them
// here for now for convenience
MemoryController *memCtrl;
PhysicalMemory *physmem;
SWContext *swCtx;
#else
Process *process;
FunctionalMemory *mem; // functional storage for process address space
// Address space ID. Note that this is used for TIMING cache
// simulation only; all functional memory accesses should use
// one of the FunctionalMemory pointers above.
short asid;
#endif
/**
* Temporary storage to pass the source address from copy_load to
* copy_store.
* @todo Remove this temporary when we have a better way to do it.
*/
Addr copySrcAddr;
/**
* Temp storage for the physical source address of a copy.
* @todo Remove this temporary when we have a better way to do it.
*/
Addr copySrcPhysAddr;
/*
* number of executed instructions, for matching with syscall trace
* points in EIO files.
*/
Counter func_exe_inst;
//
// Count failed store conditionals so we can warn of apparent
// application deadlock situations.
unsigned storeCondFailures;
// constructor: initialize context from given process structure
#ifdef FULL_SYSTEM
ExecContext(BaseCPU *_cpu, int _thread_num, System *_system,
AlphaITB *_itb, AlphaDTB *_dtb, FunctionalMemory *_dem);
#else
ExecContext(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid);
ExecContext(BaseCPU *_cpu, int _thread_num, FunctionalMemory *_mem,
int _asid);
#endif
virtual ~ExecContext() {}
virtual void takeOverFrom(ExecContext *oldContext);
void regStats(const std::string &name);
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
#ifdef FULL_SYSTEM
bool validInstAddr(Addr addr) { return true; }
bool validDataAddr(Addr addr) { return true; }
int getInstAsid() { return ITB_ASN_ASN(regs.ipr[TheISA::IPR_ITB_ASN]); }
int getDataAsid() { return DTB_ASN_ASN(regs.ipr[TheISA::IPR_DTB_ASN]); }
Fault translateInstReq(MemReqPtr &req)
{
return itb->translate(req);
}
Fault translateDataReadReq(MemReqPtr &req)
{
return dtb->translate(req, false);
}
Fault translateDataWriteReq(MemReqPtr &req)
{
return dtb->translate(req, true);
}
#else
bool validInstAddr(Addr addr)
{ return process->validInstAddr(addr); }
bool validDataAddr(Addr addr)
{ return process->validDataAddr(addr); }
int getInstAsid() { return asid; }
int getDataAsid() { return asid; }
Fault dummyTranslation(MemReqPtr &req)
{
#if 0
assert((req->vaddr >> 48 & 0xffff) == 0);
#endif
// put the asid in the upper 16 bits of the paddr
req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
return No_Fault;
}
Fault translateInstReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
Fault translateDataReadReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
Fault translateDataWriteReq(MemReqPtr &req)
{
return dummyTranslation(req);
}
#endif
template <class T>
Fault read(MemReqPtr &req, T &data)
{
#if defined(TARGET_ALPHA) && defined(FULL_SYSTEM)
if (req->flags & LOCKED) {
MiscRegFile *cregs = &req->xc->regs.miscRegs;
cregs->lock_addr = req->paddr;
cregs->lock_flag = true;
}
#endif
return mem->read(req, data);
}
template <class T>
Fault write(MemReqPtr &req, T &data)
{
#if defined(TARGET_ALPHA) && defined(FULL_SYSTEM)
MiscRegFile *cregs;
// If this is a store conditional, act appropriately
if (req->flags & LOCKED) {
cregs = &req->xc->regs.miscRegs;
if (req->flags & UNCACHEABLE) {
// Don't update result register (see stq_c in isa_desc)
req->result = 2;
req->xc->storeCondFailures = 0;//Needed? [RGD]
} else {
req->result = cregs->lock_flag;
if (!cregs->lock_flag ||
((cregs->lock_addr & ~0xf) != (req->paddr & ~0xf))) {
cregs->lock_flag = false;
if (((++req->xc->storeCondFailures) % 100000) == 0) {
std::cerr << "Warning: "
<< req->xc->storeCondFailures
<< " consecutive store conditional failures "
<< "on cpu " << req->xc->cpu_id
<< std::endl;
}
return No_Fault;
}
else req->xc->storeCondFailures = 0;
}
}
// Need to clear any locked flags on other proccessors for
// this address. Only do this for succsful Store Conditionals
// and all other stores (WH64?). Unsuccessful Store
// Conditionals would have returned above, and wouldn't fall
// through.
for (int i = 0; i < system->execContexts.size(); i++){
cregs = &system->execContexts[i]->regs.miscRegs;
if ((cregs->lock_addr & ~0xf) == (req->paddr & ~0xf)) {
cregs->lock_flag = false;
}
}
#endif
return mem->write(req, data);
}
virtual bool misspeculating();
MachInst getInst() { return inst; }
void setInst(MachInst new_inst)
{
inst = new_inst;
}
Fault instRead(MemReqPtr &req)
{
return mem->read(req, inst);
}
//
// New accessors for new decoder.
//
uint64_t readIntReg(int reg_idx)
{
return regs.intRegFile[reg_idx];
}
float readFloatRegSingle(int reg_idx)
{
return (float)regs.floatRegFile.d[reg_idx];
}
double readFloatRegDouble(int reg_idx)
{
return regs.floatRegFile.d[reg_idx];
}
uint64_t readFloatRegInt(int reg_idx)
{
return regs.floatRegFile.q[reg_idx];
}
void setIntReg(int reg_idx, uint64_t val)
{
regs.intRegFile[reg_idx] = val;
}
void setFloatRegSingle(int reg_idx, float val)
{
regs.floatRegFile.d[reg_idx] = (double)val;
}
void setFloatRegDouble(int reg_idx, double val)
{
regs.floatRegFile.d[reg_idx] = val;
}
void setFloatRegInt(int reg_idx, uint64_t val)
{
regs.floatRegFile.q[reg_idx] = val;
}
uint64_t readPC()
{
return regs.pc;
}
void setNextPC(uint64_t val)
{
regs.npc = val;
}
uint64_t readUniq()
{
return regs.miscRegs.uniq;
}
void setUniq(uint64_t val)
{
regs.miscRegs.uniq = val;
}
uint64_t readFpcr()
{
return regs.miscRegs.fpcr;
}
void setFpcr(uint64_t val)
{
regs.miscRegs.fpcr = val;
}
#ifdef FULL_SYSTEM
uint64_t readIpr(int idx, Fault &fault);
Fault setIpr(int idx, uint64_t val);
int readIntrFlag() { return regs.intrflag; }
void setIntrFlag(int val) { regs.intrflag = val; }
Fault hwrei();
bool inPalMode() { return PC_PAL(regs.pc); }
void ev5_trap(Fault fault);
bool simPalCheck(int palFunc);
#endif
/** Meant to be more generic trap function to be
* called when an instruction faults.
* @param fault The fault generated by executing the instruction.
* @todo How to do this properly so it's dependent upon ISA only?
*/
void trap(Fault fault);
#ifndef FULL_SYSTEM
IntReg getSyscallArg(int i)
{
return regs.intRegFile[ArgumentReg0 + i];
}
// used to shift args for indirect syscall
void setSyscallArg(int i, IntReg val)
{
regs.intRegFile[ArgumentReg0 + i] = val;
}
void setSyscallReturn(int64_t return_value)
{
// check for error condition. Alpha syscall convention is to
// indicate success/failure in reg a3 (r19) and put the
// return value itself in the standard return value reg (v0).
const int RegA3 = 19; // only place this is used
if (return_value >= 0) {
// no error
regs.intRegFile[RegA3] = 0;
regs.intRegFile[ReturnValueReg] = return_value;
} else {
// got an error, return details
regs.intRegFile[RegA3] = (IntReg) -1;
regs.intRegFile[ReturnValueReg] = -return_value;
}
}
void syscall()
{
process->syscall(this);
}
#endif
};
// for non-speculative execution context, spec_mode is always false
inline bool
ExecContext::misspeculating()
{
return false;
}
#endif // __EXEC_CONTEXT_HH__