gem5/src/gpu-compute/gpu_static_inst.hh
Tony Gutierrez 7ac38849ab gpu-compute: remove inst enums and use bit flag for attributes
this patch removes the GPUStaticInst enums that were defined in GPU.py.
instead, a simple set of attribute flags that can be set in the base
instruction class are used. this will help unify the attributes of HSAIL
and machine ISA instructions within the model itself.

because the static instrution now carries the attributes, a GPUDynInst
must carry a pointer to a valid GPUStaticInst so a new static kernel launch
instruction is added, which carries the attributes needed to perform a
the kernel launch.
2016-10-26 22:47:11 -04:00

293 lines
9.7 KiB
C++

/*
* Copyright (c) 2015 Advanced Micro Devices, Inc.
* All rights reserved.
*
* For use for simulation and test purposes only
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Author: Anthony Gutierrez
*/
#ifndef __GPU_STATIC_INST_HH__
#define __GPU_STATIC_INST_HH__
/*
* @file gpu_static_inst.hh
*
* Defines the base class representing static instructions for the GPU. The
* instructions are "static" because they contain no dynamic instruction
* information. GPUStaticInst corresponds to the StaticInst class for the CPU
* models.
*/
#include <cstdint>
#include <string>
#include "enums/GPUStaticInstFlags.hh"
#include "enums/StorageClassType.hh"
#include "gpu-compute/gpu_dyn_inst.hh"
#include "gpu-compute/misc.hh"
class BaseOperand;
class BaseRegOperand;
class Wavefront;
class GPUStaticInst : public GPUStaticInstFlags
{
public:
GPUStaticInst(const std::string &opcode);
void instNum(int num) { _instNum = num; }
int instNum() { return _instNum; }
void ipdInstNum(int num) { _ipdInstNum = num; }
int ipdInstNum() const { return _ipdInstNum; }
virtual void execute(GPUDynInstPtr gpuDynInst) = 0;
virtual void generateDisassembly() = 0;
const std::string& disassemble();
virtual int getNumOperands() = 0;
virtual bool isCondRegister(int operandIndex) = 0;
virtual bool isScalarRegister(int operandIndex) = 0;
virtual bool isVectorRegister(int operandIndex) = 0;
virtual bool isSrcOperand(int operandIndex) = 0;
virtual bool isDstOperand(int operandIndex) = 0;
virtual int getOperandSize(int operandIndex) = 0;
virtual int getRegisterIndex(int operandIndex) = 0;
virtual int numDstRegOperands() = 0;
virtual int numSrcRegOperands() = 0;
virtual bool isValid() const = 0;
bool isALU() const { return _flags[ALU]; }
bool isBranch() const { return _flags[Branch]; }
bool isNop() const { return _flags[Nop]; }
bool isReturn() const { return _flags[Return]; }
bool
isUnconditionalJump() const
{
return _flags[UnconditionalJump];
}
bool isSpecialOp() const { return _flags[SpecialOp]; }
bool isWaitcnt() const { return _flags[Waitcnt]; }
bool isBarrier() const { return _flags[MemBarrier]; }
bool isMemFence() const { return _flags[MemFence]; }
bool isMemRef() const { return _flags[MemoryRef]; }
bool isFlat() const { return _flags[Flat]; }
bool isLoad() const { return _flags[Load]; }
bool isStore() const { return _flags[Store]; }
bool
isAtomic() const
{
return _flags[AtomicReturn] || _flags[AtomicNoReturn];
}
bool isAtomicNoRet() const { return _flags[AtomicNoReturn]; }
bool isAtomicRet() const { return _flags[AtomicReturn]; }
bool isScalar() const { return _flags[Scalar]; }
bool readsSCC() const { return _flags[ReadsSCC]; }
bool writesSCC() const { return _flags[WritesSCC]; }
bool readsVCC() const { return _flags[ReadsVCC]; }
bool writesVCC() const { return _flags[WritesVCC]; }
bool isAtomicAnd() const { return _flags[AtomicAnd]; }
bool isAtomicOr() const { return _flags[AtomicOr]; }
bool isAtomicXor() const { return _flags[AtomicXor]; }
bool isAtomicCAS() const { return _flags[AtomicCAS]; }
bool isAtomicExch() const { return _flags[AtomicExch]; }
bool isAtomicAdd() const { return _flags[AtomicAdd]; }
bool isAtomicSub() const { return _flags[AtomicSub]; }
bool isAtomicInc() const { return _flags[AtomicInc]; }
bool isAtomicDec() const { return _flags[AtomicDec]; }
bool isAtomicMax() const { return _flags[AtomicMax]; }
bool isAtomicMin() const { return _flags[AtomicMin]; }
bool
isArgLoad() const
{
return (_flags[KernArgSegment] || _flags[ArgSegment]) && _flags[Load];
}
bool
isGlobalMem() const
{
return _flags[MemoryRef] && (_flags[GlobalSegment] ||
_flags[PrivateSegment] || _flags[ReadOnlySegment] ||
_flags[SpillSegment]);
}
bool
isLocalMem() const
{
return _flags[MemoryRef] && _flags[GroupSegment];
}
bool isArgSeg() const { return _flags[ArgSegment]; }
bool isGlobalSeg() const { return _flags[GlobalSegment]; }
bool isGroupSeg() const { return _flags[GroupSegment]; }
bool isKernArgSeg() const { return _flags[KernArgSegment]; }
bool isPrivateSeg() const { return _flags[PrivateSegment]; }
bool isReadOnlySeg() const { return _flags[ReadOnlySegment]; }
bool isSpillSeg() const { return _flags[SpillSegment]; }
bool isWorkitemScope() const { return _flags[WorkitemScope]; }
bool isWavefrontScope() const { return _flags[WavefrontScope]; }
bool isWorkgroupScope() const { return _flags[WorkgroupScope]; }
bool isDeviceScope() const { return _flags[DeviceScope]; }
bool isSystemScope() const { return _flags[SystemScope]; }
bool isNoScope() const { return _flags[NoScope]; }
bool isRelaxedOrder() const { return _flags[RelaxedOrder]; }
bool isAcquire() const { return _flags[Acquire]; }
bool isRelease() const { return _flags[Release]; }
bool isAcquireRelease() const { return _flags[AcquireRelease]; }
bool isNoOrder() const { return _flags[NoOrder]; }
/**
* Coherence domain of a memory instruction. Only valid for
* machine ISA. The coherence domain specifies where it is
* possible to perform memory synchronization, e.g., acquire
* or release, from the shader kernel.
*
* isGloballyCoherent(): returns true if kernel is sharing memory
* with other work-items on the same device (GPU)
*
* isSystemCoherent(): returns true if kernel is sharing memory
* with other work-items on a different device (GPU) or the host (CPU)
*/
bool isGloballyCoherent() const { return _flags[GloballyCoherent]; }
bool isSystemCoherent() const { return _flags[SystemCoherent]; }
virtual uint32_t instSize() = 0;
// only used for memory instructions
virtual void
initiateAcc(GPUDynInstPtr gpuDynInst)
{
fatal("calling initiateAcc() on a non-memory instruction.\n");
}
// only used for memory instructions
virtual void
completeAcc(GPUDynInstPtr gpuDynInst)
{
fatal("calling completeAcc() on a non-memory instruction.\n");
}
virtual uint32_t getTargetPc() { return 0; }
static uint64_t dynamic_id_count;
// For flat memory accesses
Enums::StorageClassType executed_as;
void setFlag(Flags flag) { _flags[flag] = true; }
protected:
virtual void
execLdAcq(GPUDynInstPtr gpuDynInst)
{
fatal("calling execLdAcq() on a non-load instruction.\n");
}
virtual void
execSt(GPUDynInstPtr gpuDynInst)
{
fatal("calling execLdAcq() on a non-load instruction.\n");
}
virtual void
execAtomic(GPUDynInstPtr gpuDynInst)
{
fatal("calling execAtomic() on a non-atomic instruction.\n");
}
virtual void
execAtomicAcq(GPUDynInstPtr gpuDynInst)
{
fatal("calling execAtomicAcq() on a non-atomic instruction.\n");
}
const std::string opcode;
std::string disassembly;
int _instNum;
/**
* Identifier of the immediate post-dominator instruction.
*/
int _ipdInstNum;
std::bitset<Num_Flags> _flags;
};
class KernelLaunchStaticInst : public GPUStaticInst
{
public:
KernelLaunchStaticInst() : GPUStaticInst("kernel_launch")
{
setFlag(Nop);
setFlag(Scalar);
setFlag(Acquire);
setFlag(SystemScope);
setFlag(GlobalSegment);
}
void
execute(GPUDynInstPtr gpuDynInst)
{
fatal("kernel launch instruction should not be executed\n");
}
void
generateDisassembly()
{
disassembly = opcode;
}
int getNumOperands() { return 0; }
bool isCondRegister(int operandIndex) { return false; }
bool isScalarRegister(int operandIndex) { return false; }
bool isVectorRegister(int operandIndex) { return false; }
bool isSrcOperand(int operandIndex) { return false; }
bool isDstOperand(int operandIndex) { return false; }
int getOperandSize(int operandIndex) { return 0; }
int getRegisterIndex(int operandIndex) { return 0; }
int numDstRegOperands() { return 0; }
int numSrcRegOperands() { return 0; }
bool isValid() const { return true; }
uint32_t instSize() { return 0; }
};
#endif // __GPU_STATIC_INST_HH__