cae6b571d6
into ewok.(none):/home/gblack/m5/newmem --HG-- extra : convert_revision : 3eb97976caf57e43119a998c31128ca6f163c05b
450 lines
14 KiB
C++
450 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2006 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __CPU_EXEC_CONTEXT_HH__
|
|
#define __CPU_EXEC_CONTEXT_HH__
|
|
|
|
#include "config/full_system.hh"
|
|
#include "mem/request.hh"
|
|
#include "sim/faults.hh"
|
|
#include "sim/host.hh"
|
|
#include "sim/serialize.hh"
|
|
#include "sim/byteswap.hh"
|
|
|
|
// @todo: Figure out a more architecture independent way to obtain the ITB and
|
|
// DTB pointers.
|
|
class AlphaDTB;
|
|
class AlphaITB;
|
|
class BaseCPU;
|
|
class Event;
|
|
class TranslatingPort;
|
|
class FunctionalPort;
|
|
class VirtualPort;
|
|
class Process;
|
|
class System;
|
|
|
|
class ExecContext
|
|
{
|
|
protected:
|
|
typedef TheISA::RegFile RegFile;
|
|
typedef TheISA::MachInst MachInst;
|
|
typedef TheISA::IntReg IntReg;
|
|
typedef TheISA::FloatReg FloatReg;
|
|
typedef TheISA::FloatRegBits FloatRegBits;
|
|
typedef TheISA::MiscRegFile MiscRegFile;
|
|
typedef TheISA::MiscReg MiscReg;
|
|
public:
|
|
enum Status
|
|
{
|
|
/// Initialized but not running yet. All CPUs start in
|
|
/// this state, but most transition to Active on cycle 1.
|
|
/// In MP or SMT systems, non-primary contexts will stay
|
|
/// in this state until a thread is assigned to them.
|
|
Unallocated,
|
|
|
|
/// Running. Instructions should be executed only when
|
|
/// the context is in this state.
|
|
Active,
|
|
|
|
/// Temporarily inactive. Entered while waiting for
|
|
/// synchronization, etc.
|
|
Suspended,
|
|
|
|
/// Permanently shut down. Entered when target executes
|
|
/// m5exit pseudo-instruction. When all contexts enter
|
|
/// this state, the simulation will terminate.
|
|
Halted
|
|
};
|
|
|
|
virtual ~ExecContext() { };
|
|
|
|
virtual BaseCPU *getCpuPtr() = 0;
|
|
|
|
virtual void setCpuId(int id) = 0;
|
|
|
|
virtual int readCpuId() = 0;
|
|
|
|
#if FULL_SYSTEM
|
|
virtual System *getSystemPtr() = 0;
|
|
|
|
virtual AlphaITB *getITBPtr() = 0;
|
|
|
|
virtual AlphaDTB * getDTBPtr() = 0;
|
|
|
|
virtual FunctionalPort *getPhysPort() = 0;
|
|
|
|
virtual VirtualPort *getVirtPort(ExecContext *xc = NULL) = 0;
|
|
|
|
virtual void delVirtPort(VirtualPort *vp) = 0;
|
|
#else
|
|
virtual TranslatingPort *getMemPort() = 0;
|
|
|
|
virtual Process *getProcessPtr() = 0;
|
|
#endif
|
|
|
|
virtual Status status() const = 0;
|
|
|
|
virtual void setStatus(Status new_status) = 0;
|
|
|
|
/// Set the status to Active. Optional delay indicates number of
|
|
/// cycles to wait before beginning execution.
|
|
virtual void activate(int delay = 1) = 0;
|
|
|
|
/// Set the status to Suspended.
|
|
virtual void suspend() = 0;
|
|
|
|
/// Set the status to Unallocated.
|
|
virtual void deallocate() = 0;
|
|
|
|
/// Set the status to Halted.
|
|
virtual void halt() = 0;
|
|
|
|
#if FULL_SYSTEM
|
|
virtual void dumpFuncProfile() = 0;
|
|
#endif
|
|
|
|
virtual void takeOverFrom(ExecContext *old_context) = 0;
|
|
|
|
virtual void regStats(const std::string &name) = 0;
|
|
|
|
virtual void serialize(std::ostream &os) = 0;
|
|
virtual void unserialize(Checkpoint *cp, const std::string §ion) = 0;
|
|
|
|
#if FULL_SYSTEM
|
|
virtual Event *getQuiesceEvent() = 0;
|
|
|
|
// Not necessarily the best location for these...
|
|
// Having an extra function just to read these is obnoxious
|
|
virtual Tick readLastActivate() = 0;
|
|
virtual Tick readLastSuspend() = 0;
|
|
|
|
virtual void profileClear() = 0;
|
|
virtual void profileSample() = 0;
|
|
#endif
|
|
|
|
virtual int getThreadNum() = 0;
|
|
|
|
virtual int getInstAsid() = 0;
|
|
virtual int getDataAsid() = 0;
|
|
|
|
virtual Fault translateInstReq(RequestPtr &req) = 0;
|
|
|
|
virtual Fault translateDataReadReq(RequestPtr &req) = 0;
|
|
|
|
virtual Fault translateDataWriteReq(RequestPtr &req) = 0;
|
|
|
|
// Also somewhat obnoxious. Really only used for the TLB fault.
|
|
// However, may be quite useful in SPARC.
|
|
virtual TheISA::MachInst getInst() = 0;
|
|
|
|
virtual void copyArchRegs(ExecContext *xc) = 0;
|
|
|
|
virtual void clearArchRegs() = 0;
|
|
|
|
//
|
|
// New accessors for new decoder.
|
|
//
|
|
virtual uint64_t readIntReg(int reg_idx) = 0;
|
|
|
|
virtual FloatReg readFloatReg(int reg_idx, int width) = 0;
|
|
|
|
virtual FloatReg readFloatReg(int reg_idx) = 0;
|
|
|
|
virtual FloatRegBits readFloatRegBits(int reg_idx, int width) = 0;
|
|
|
|
virtual FloatRegBits readFloatRegBits(int reg_idx) = 0;
|
|
|
|
virtual void setIntReg(int reg_idx, uint64_t val) = 0;
|
|
|
|
virtual void setFloatReg(int reg_idx, FloatReg val, int width) = 0;
|
|
|
|
virtual void setFloatReg(int reg_idx, FloatReg val) = 0;
|
|
|
|
virtual void setFloatRegBits(int reg_idx, FloatRegBits val) = 0;
|
|
|
|
virtual void setFloatRegBits(int reg_idx, FloatRegBits val, int width) = 0;
|
|
|
|
virtual uint64_t readPC() = 0;
|
|
|
|
virtual void setPC(uint64_t val) = 0;
|
|
|
|
virtual uint64_t readNextPC() = 0;
|
|
|
|
virtual void setNextPC(uint64_t val) = 0;
|
|
|
|
virtual uint64_t readNextNPC() = 0;
|
|
|
|
virtual void setNextNPC(uint64_t val) = 0;
|
|
|
|
virtual MiscReg readMiscReg(int misc_reg) = 0;
|
|
|
|
virtual MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault) = 0;
|
|
|
|
virtual Fault setMiscReg(int misc_reg, const MiscReg &val) = 0;
|
|
|
|
virtual Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val) = 0;
|
|
|
|
// Also not necessarily the best location for these two. Hopefully will go
|
|
// away once we decide upon where st cond failures goes.
|
|
virtual unsigned readStCondFailures() = 0;
|
|
|
|
virtual void setStCondFailures(unsigned sc_failures) = 0;
|
|
|
|
#if FULL_SYSTEM
|
|
virtual int readIntrFlag() = 0;
|
|
virtual void setIntrFlag(int val) = 0;
|
|
virtual Fault hwrei() = 0;
|
|
virtual bool inPalMode() = 0;
|
|
virtual bool simPalCheck(int palFunc) = 0;
|
|
#endif
|
|
|
|
// Only really makes sense for old CPU model. Still could be useful though.
|
|
virtual bool misspeculating() = 0;
|
|
|
|
#if !FULL_SYSTEM
|
|
virtual IntReg getSyscallArg(int i) = 0;
|
|
|
|
// used to shift args for indirect syscall
|
|
virtual void setSyscallArg(int i, IntReg val) = 0;
|
|
|
|
virtual void setSyscallReturn(SyscallReturn return_value) = 0;
|
|
|
|
virtual void syscall(int64_t callnum) = 0;
|
|
|
|
// Same with st cond failures.
|
|
virtual Counter readFuncExeInst() = 0;
|
|
|
|
virtual void setFuncExeInst(Counter new_val) = 0;
|
|
#endif
|
|
|
|
virtual void changeRegFileContext(RegFile::ContextParam param,
|
|
RegFile::ContextVal val) = 0;
|
|
};
|
|
|
|
template <class XC>
|
|
class ProxyExecContext : public ExecContext
|
|
{
|
|
public:
|
|
ProxyExecContext(XC *actual_xc)
|
|
{ actualXC = actual_xc; }
|
|
|
|
private:
|
|
XC *actualXC;
|
|
|
|
public:
|
|
|
|
BaseCPU *getCpuPtr() { return actualXC->getCpuPtr(); }
|
|
|
|
void setCpuId(int id) { actualXC->setCpuId(id); }
|
|
|
|
int readCpuId() { return actualXC->readCpuId(); }
|
|
|
|
#if FULL_SYSTEM
|
|
System *getSystemPtr() { return actualXC->getSystemPtr(); }
|
|
|
|
AlphaITB *getITBPtr() { return actualXC->getITBPtr(); }
|
|
|
|
AlphaDTB *getDTBPtr() { return actualXC->getDTBPtr(); }
|
|
|
|
FunctionalPort *getPhysPort() { return actualXC->getPhysPort(); }
|
|
|
|
VirtualPort *getVirtPort(ExecContext *xc = NULL) { return actualXC->getVirtPort(xc); }
|
|
|
|
void delVirtPort(VirtualPort *vp) { return actualXC->delVirtPort(vp); }
|
|
#else
|
|
TranslatingPort *getMemPort() { return actualXC->getMemPort(); }
|
|
|
|
Process *getProcessPtr() { return actualXC->getProcessPtr(); }
|
|
#endif
|
|
|
|
Status status() const { return actualXC->status(); }
|
|
|
|
void setStatus(Status new_status) { actualXC->setStatus(new_status); }
|
|
|
|
/// Set the status to Active. Optional delay indicates number of
|
|
/// cycles to wait before beginning execution.
|
|
void activate(int delay = 1) { actualXC->activate(delay); }
|
|
|
|
/// Set the status to Suspended.
|
|
void suspend() { actualXC->suspend(); }
|
|
|
|
/// Set the status to Unallocated.
|
|
void deallocate() { actualXC->deallocate(); }
|
|
|
|
/// Set the status to Halted.
|
|
void halt() { actualXC->halt(); }
|
|
|
|
#if FULL_SYSTEM
|
|
void dumpFuncProfile() { actualXC->dumpFuncProfile(); }
|
|
#endif
|
|
|
|
void takeOverFrom(ExecContext *oldContext)
|
|
{ actualXC->takeOverFrom(oldContext); }
|
|
|
|
void regStats(const std::string &name) { actualXC->regStats(name); }
|
|
|
|
void serialize(std::ostream &os) { actualXC->serialize(os); }
|
|
void unserialize(Checkpoint *cp, const std::string §ion)
|
|
{ actualXC->unserialize(cp, section); }
|
|
|
|
#if FULL_SYSTEM
|
|
Event *getQuiesceEvent() { return actualXC->getQuiesceEvent(); }
|
|
|
|
Tick readLastActivate() { return actualXC->readLastActivate(); }
|
|
Tick readLastSuspend() { return actualXC->readLastSuspend(); }
|
|
|
|
void profileClear() { return actualXC->profileClear(); }
|
|
void profileSample() { return actualXC->profileSample(); }
|
|
#endif
|
|
|
|
int getThreadNum() { return actualXC->getThreadNum(); }
|
|
|
|
int getInstAsid() { return actualXC->getInstAsid(); }
|
|
int getDataAsid() { return actualXC->getDataAsid(); }
|
|
|
|
Fault translateInstReq(RequestPtr &req)
|
|
{ return actualXC->translateInstReq(req); }
|
|
|
|
Fault translateDataReadReq(RequestPtr &req)
|
|
{ return actualXC->translateDataReadReq(req); }
|
|
|
|
Fault translateDataWriteReq(RequestPtr &req)
|
|
{ return actualXC->translateDataWriteReq(req); }
|
|
|
|
// @todo: Do I need this?
|
|
MachInst getInst() { return actualXC->getInst(); }
|
|
|
|
// @todo: Do I need this?
|
|
void copyArchRegs(ExecContext *xc) { actualXC->copyArchRegs(xc); }
|
|
|
|
void clearArchRegs() { actualXC->clearArchRegs(); }
|
|
|
|
//
|
|
// New accessors for new decoder.
|
|
//
|
|
uint64_t readIntReg(int reg_idx)
|
|
{ return actualXC->readIntReg(reg_idx); }
|
|
|
|
FloatReg readFloatReg(int reg_idx, int width)
|
|
{ return actualXC->readFloatReg(reg_idx, width); }
|
|
|
|
FloatReg readFloatReg(int reg_idx)
|
|
{ return actualXC->readFloatReg(reg_idx); }
|
|
|
|
FloatRegBits readFloatRegBits(int reg_idx, int width)
|
|
{ return actualXC->readFloatRegBits(reg_idx, width); }
|
|
|
|
FloatRegBits readFloatRegBits(int reg_idx)
|
|
{ return actualXC->readFloatRegBits(reg_idx); }
|
|
|
|
void setIntReg(int reg_idx, uint64_t val)
|
|
{ actualXC->setIntReg(reg_idx, val); }
|
|
|
|
void setFloatReg(int reg_idx, FloatReg val, int width)
|
|
{ actualXC->setFloatReg(reg_idx, val, width); }
|
|
|
|
void setFloatReg(int reg_idx, FloatReg val)
|
|
{ actualXC->setFloatReg(reg_idx, val); }
|
|
|
|
void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
|
|
{ actualXC->setFloatRegBits(reg_idx, val, width); }
|
|
|
|
void setFloatRegBits(int reg_idx, FloatRegBits val)
|
|
{ actualXC->setFloatRegBits(reg_idx, val); }
|
|
|
|
uint64_t readPC() { return actualXC->readPC(); }
|
|
|
|
void setPC(uint64_t val) { actualXC->setPC(val); }
|
|
|
|
uint64_t readNextPC() { return actualXC->readNextPC(); }
|
|
|
|
void setNextPC(uint64_t val) { actualXC->setNextPC(val); }
|
|
|
|
uint64_t readNextNPC() { return actualXC->readNextNPC(); }
|
|
|
|
void setNextNPC(uint64_t val) { actualXC->setNextNPC(val); }
|
|
|
|
MiscReg readMiscReg(int misc_reg)
|
|
{ return actualXC->readMiscReg(misc_reg); }
|
|
|
|
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
|
|
{ return actualXC->readMiscRegWithEffect(misc_reg, fault); }
|
|
|
|
Fault setMiscReg(int misc_reg, const MiscReg &val)
|
|
{ return actualXC->setMiscReg(misc_reg, val); }
|
|
|
|
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val)
|
|
{ return actualXC->setMiscRegWithEffect(misc_reg, val); }
|
|
|
|
unsigned readStCondFailures()
|
|
{ return actualXC->readStCondFailures(); }
|
|
|
|
void setStCondFailures(unsigned sc_failures)
|
|
{ actualXC->setStCondFailures(sc_failures); }
|
|
|
|
#if FULL_SYSTEM
|
|
int readIntrFlag() { return actualXC->readIntrFlag(); }
|
|
|
|
void setIntrFlag(int val) { actualXC->setIntrFlag(val); }
|
|
|
|
Fault hwrei() { return actualXC->hwrei(); }
|
|
|
|
bool inPalMode() { return actualXC->inPalMode(); }
|
|
|
|
bool simPalCheck(int palFunc) { return actualXC->simPalCheck(palFunc); }
|
|
#endif
|
|
|
|
// @todo: Fix this!
|
|
bool misspeculating() { return actualXC->misspeculating(); }
|
|
|
|
#if !FULL_SYSTEM
|
|
IntReg getSyscallArg(int i) { return actualXC->getSyscallArg(i); }
|
|
|
|
// used to shift args for indirect syscall
|
|
void setSyscallArg(int i, IntReg val)
|
|
{ actualXC->setSyscallArg(i, val); }
|
|
|
|
void setSyscallReturn(SyscallReturn return_value)
|
|
{ actualXC->setSyscallReturn(return_value); }
|
|
|
|
void syscall(int64_t callnum) { actualXC->syscall(callnum); }
|
|
|
|
Counter readFuncExeInst() { return actualXC->readFuncExeInst(); }
|
|
|
|
void setFuncExeInst(Counter new_val)
|
|
{ return actualXC->setFuncExeInst(new_val); }
|
|
#endif
|
|
|
|
void changeRegFileContext(RegFile::ContextParam param,
|
|
RegFile::ContextVal val)
|
|
{
|
|
actualXC->changeRegFileContext(param, val);
|
|
}
|
|
};
|
|
|
|
#endif
|