gem5/cpu/simple/timing.cc
Steve Reinhardt 796fa429fe Change Packet parameters on Port methods from references to pointers.
--HG--
extra : convert_revision : 7193e70304d4cbe1e4cbe16ce0d8527b2754d066
2006-05-18 22:32:21 -04:00

560 lines
14 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/utility.hh"
#include "cpu/exetrace.hh"
#include "cpu/simple/timing.hh"
#include "mem/packet_impl.hh"
#include "sim/builder.hh"
using namespace std;
using namespace TheISA;
void
TimingSimpleCPU::init()
{
//Create Memory Ports (conect them up)
Port *mem_dport = mem->getPort("");
dcachePort.setPeer(mem_dport);
mem_dport->setPeer(&dcachePort);
Port *mem_iport = mem->getPort("");
icachePort.setPeer(mem_iport);
mem_iport->setPeer(&icachePort);
BaseCPU::init();
#if FULL_SYSTEM
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
// initialize CPU, including PC
TheISA::initCPU(xc, xc->readCpuId());
}
#endif
}
Tick
TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
{
panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
return curTick;
}
void
TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
{
panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
}
void
TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
{
panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
}
TimingSimpleCPU::TimingSimpleCPU(Params *p)
: BaseSimpleCPU(p), icachePort(this), dcachePort(this)
{
_status = Idle;
ifetch_pkt = dcache_pkt = NULL;
}
TimingSimpleCPU::~TimingSimpleCPU()
{
}
void
TimingSimpleCPU::serialize(ostream &os)
{
BaseSimpleCPU::serialize(os);
SERIALIZE_ENUM(_status);
}
void
TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
BaseSimpleCPU::unserialize(cp, section);
UNSERIALIZE_ENUM(_status);
}
void
TimingSimpleCPU::switchOut(Sampler *s)
{
sampler = s;
if (status() == Running) {
_status = SwitchedOut;
}
sampler->signalSwitched();
}
void
TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU);
// if any of this CPU's ExecContexts are active, mark the CPU as
// running and schedule its tick event.
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
if (xc->status() == ExecContext::Active && _status != Running) {
_status = Running;
break;
}
}
}
void
TimingSimpleCPU::activateContext(int thread_num, int delay)
{
assert(thread_num == 0);
assert(cpuXC);
assert(_status == Idle);
notIdleFraction++;
_status = Running;
// kick things off by initiating the fetch of the next instruction
Event *e =
new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
e->schedule(curTick + cycles(delay));
}
void
TimingSimpleCPU::suspendContext(int thread_num)
{
assert(thread_num == 0);
assert(cpuXC);
panic("TimingSimpleCPU::suspendContext not implemented");
assert(_status == Running);
notIdleFraction--;
_status = Idle;
}
template <class T>
Fault
TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
{
Request *data_read_req = new Request(true);
data_read_req->setVaddr(addr);
data_read_req->setSize(sizeof(T));
data_read_req->setFlags(flags);
data_read_req->setTime(curTick);
if (traceData) {
traceData->setAddr(data_read_req->getVaddr());
}
// translate to physical address
Fault fault = cpuXC->translateDataReadReq(data_read_req);
// Now do the access.
if (fault == NoFault) {
Packet *data_read_pkt = new Packet;
data_read_pkt->cmd = Read;
data_read_pkt->req = data_read_req;
data_read_pkt->dataDynamic<T>(new T);
data_read_pkt->addr = data_read_req->getPaddr();
data_read_pkt->size = sizeof(T);
data_read_pkt->dest = Packet::Broadcast;
if (!dcachePort.sendTiming(data_read_pkt)) {
_status = DcacheRetry;
dcache_pkt = data_read_pkt;
} else {
_status = DcacheWaitResponse;
dcache_pkt = NULL;
}
}
// This will need a new way to tell if it has a dcache attached.
if (data_read_req->getFlags() & UNCACHEABLE)
recordEvent("Uncached Read");
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
Request *data_write_req = new Request(true);
data_write_req->setVaddr(addr);
data_write_req->setTime(curTick);
data_write_req->setSize(sizeof(T));
data_write_req->setFlags(flags);
// translate to physical address
Fault fault = cpuXC->translateDataWriteReq(data_write_req);
// Now do the access.
if (fault == NoFault) {
Packet *data_write_pkt = new Packet;
data_write_pkt->cmd = Write;
data_write_pkt->req = data_write_req;
data_write_pkt->allocate();
data_write_pkt->size = sizeof(T);
data_write_pkt->set(data);
data_write_pkt->addr = data_write_req->getPaddr();
data_write_pkt->dest = Packet::Broadcast;
if (!dcachePort.sendTiming(data_write_pkt)) {
_status = DcacheRetry;
dcache_pkt = data_write_pkt;
} else {
_status = DcacheWaitResponse;
dcache_pkt = NULL;
}
}
// This will need a new way to tell if it's hooked up to a cache or not.
if (data_write_req->getFlags() & UNCACHEABLE)
recordEvent("Uncached Write");
// If the write needs to have a fault on the access, consider calling
// changeStatus() and changing it to "bad addr write" or something.
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
TimingSimpleCPU::write(uint64_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint32_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint16_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint8_t data, Addr addr,
unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
void
TimingSimpleCPU::fetch()
{
Request *ifetch_req = new Request(true);
ifetch_req->setSize(sizeof(MachInst));
ifetch_pkt = new Packet;
ifetch_pkt->cmd = Read;
ifetch_pkt->dataStatic(&inst);
ifetch_pkt->req = ifetch_req;
ifetch_pkt->size = sizeof(MachInst);
ifetch_pkt->dest = Packet::Broadcast;
Fault fault = setupFetchPacket(ifetch_pkt);
if (fault == NoFault) {
if (!icachePort.sendTiming(ifetch_pkt)) {
// Need to wait for retry
_status = IcacheRetry;
} else {
// Need to wait for cache to respond
_status = IcacheWaitResponse;
// ownership of packet transferred to memory system
ifetch_pkt = NULL;
}
} else {
panic("TimingSimpleCPU fetch fault handling not implemented");
}
}
void
TimingSimpleCPU::completeInst(Fault fault)
{
postExecute();
if (traceData) {
traceData->finalize();
}
advancePC(fault);
fetch();
}
void
TimingSimpleCPU::completeIfetch()
{
// received a response from the icache: execute the received
// instruction
assert(_status == IcacheWaitResponse);
_status = Running;
preExecute();
if (curStaticInst->isMemRef()) {
// load or store: just send to dcache
Fault fault = curStaticInst->initiateAcc(this, traceData);
assert(fault == NoFault);
assert(_status == DcacheWaitResponse);
} else {
// non-memory instruction: execute completely now
Fault fault = curStaticInst->execute(this, traceData);
completeInst(fault);
}
}
bool
TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
{
cpu->completeIfetch();
return true;
}
Packet *
TimingSimpleCPU::IcachePort::recvRetry()
{
// we shouldn't get a retry unless we have a packet that we're
// waiting to transmit
assert(cpu->ifetch_pkt != NULL);
assert(cpu->_status == IcacheRetry);
cpu->_status = IcacheWaitResponse;
Packet *tmp = cpu->ifetch_pkt;
cpu->ifetch_pkt = NULL;
return tmp;
}
void
TimingSimpleCPU::completeDataAccess(Packet *pkt)
{
// received a response from the dcache: complete the load or store
// instruction
assert(pkt->result == Success);
assert(_status == DcacheWaitResponse);
_status = Running;
Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
completeInst(fault);
}
bool
TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
{
cpu->completeDataAccess(pkt);
return true;
}
Packet *
TimingSimpleCPU::DcachePort::recvRetry()
{
// we shouldn't get a retry unless we have a packet that we're
// waiting to transmit
assert(cpu->dcache_pkt != NULL);
assert(cpu->_status == DcacheRetry);
cpu->_status = DcacheWaitResponse;
Packet *tmp = cpu->dcache_pkt;
cpu->dcache_pkt = NULL;
return tmp;
}
////////////////////////////////////////////////////////////////////////
//
// TimingSimpleCPU Simulation Object
//
BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
SimObjectParam<MemObject *> mem;
#if FULL_SYSTEM
SimObjectParam<AlphaITB *> itb;
SimObjectParam<AlphaDTB *> dtb;
SimObjectParam<System *> system;
Param<int> cpu_id;
Param<Tick> profile;
#else
SimObjectParam<Process *> workload;
#endif // FULL_SYSTEM
Param<int> clock;
Param<bool> defer_registration;
Param<int> width;
Param<bool> function_trace;
Param<Tick> function_trace_start;
Param<bool> simulate_stalls;
END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
INIT_PARAM(max_insts_any_thread,
"terminate when any thread reaches this inst count"),
INIT_PARAM(max_insts_all_threads,
"terminate when all threads have reached this inst count"),
INIT_PARAM(max_loads_any_thread,
"terminate when any thread reaches this load count"),
INIT_PARAM(max_loads_all_threads,
"terminate when all threads have reached this load count"),
INIT_PARAM(mem, "memory"),
#if FULL_SYSTEM
INIT_PARAM(itb, "Instruction TLB"),
INIT_PARAM(dtb, "Data TLB"),
INIT_PARAM(system, "system object"),
INIT_PARAM(cpu_id, "processor ID"),
INIT_PARAM(profile, ""),
#else
INIT_PARAM(workload, "processes to run"),
#endif // FULL_SYSTEM
INIT_PARAM(clock, "clock speed"),
INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
INIT_PARAM(width, "cpu width"),
INIT_PARAM(function_trace, "Enable function trace"),
INIT_PARAM(function_trace_start, "Cycle to start function trace"),
INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
CREATE_SIM_OBJECT(TimingSimpleCPU)
{
TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
params->name = getInstanceName();
params->numberOfThreads = 1;
params->max_insts_any_thread = max_insts_any_thread;
params->max_insts_all_threads = max_insts_all_threads;
params->max_loads_any_thread = max_loads_any_thread;
params->max_loads_all_threads = max_loads_all_threads;
params->deferRegistration = defer_registration;
params->clock = clock;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
params->mem = mem;
#if FULL_SYSTEM
params->itb = itb;
params->dtb = dtb;
params->system = system;
params->cpu_id = cpu_id;
params->profile = profile;
#else
params->process = workload;
#endif
TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
return cpu;
}
REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)