eb7d329076
code arch/alpha/alpha_memory.cc: Fixed unaligned trap faults arch/alpha/ev5.cc: little more verbose faulting information kern/linux/linux_system.cc: more descriptive errors, and the correct offsets from symbols sim/system.cc: load local pal symbols --HG-- extra : convert_revision : 0c81badf77321d5e1a060dcae2d42204e5a1fc84
656 lines
17 KiB
C++
656 lines
17 KiB
C++
/* $Id$ */
|
|
|
|
#include "arch/alpha/alpha_memory.hh"
|
|
#include "arch/alpha/isa_traits.hh"
|
|
#include "arch/alpha/osfpal.hh"
|
|
#include "base/kgdb.h"
|
|
#include "base/remote_gdb.hh"
|
|
#include "base/stats/events.hh"
|
|
#include "cpu/base_cpu.hh"
|
|
#include "cpu/exec_context.hh"
|
|
#include "cpu/fast_cpu/fast_cpu.hh"
|
|
#include "kern/kernel_stats.hh"
|
|
#include "sim/debug.hh"
|
|
#include "sim/sim_events.hh"
|
|
|
|
#ifdef FULL_SYSTEM
|
|
|
|
#ifndef SYSTEM_EV5
|
|
#error This code is only valid for EV5 systems
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
//
|
|
//
|
|
//
|
|
void
|
|
AlphaISA::swap_palshadow(RegFile *regs, bool use_shadow)
|
|
{
|
|
if (regs->pal_shadow == use_shadow)
|
|
panic("swap_palshadow: wrong PAL shadow state");
|
|
|
|
regs->pal_shadow = use_shadow;
|
|
|
|
for (int i = 0; i < NumIntRegs; i++) {
|
|
if (reg_redir[i]) {
|
|
IntReg temp = regs->intRegFile[i];
|
|
regs->intRegFile[i] = regs->palregs[i];
|
|
regs->palregs[i] = temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Machine dependent functions
|
|
//
|
|
void
|
|
AlphaISA::initCPU(RegFile *regs)
|
|
{
|
|
initIPRs(regs);
|
|
// CPU comes up with PAL regs enabled
|
|
swap_palshadow(regs, true);
|
|
|
|
regs->pc = regs->ipr[IPR_PAL_BASE] + fault_addr[Reset_Fault];
|
|
regs->npc = regs->pc + sizeof(MachInst);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// alpha exceptions - value equals trap address, update with MD_FAULT_TYPE
|
|
//
|
|
Addr
|
|
AlphaISA::fault_addr[Num_Faults] = {
|
|
0x0000, /* No_Fault */
|
|
0x0001, /* Reset_Fault */
|
|
0x0401, /* Machine_Check_Fault */
|
|
0x0501, /* Arithmetic_Fault */
|
|
0x0101, /* Interrupt_Fault */
|
|
0x0201, /* Ndtb_Miss_Fault */
|
|
0x0281, /* Pdtb_Miss_Fault */
|
|
0x0301, /* Alignment_Fault */
|
|
0x0381, /* DTB_Fault_Fault */
|
|
0x0381, /* DTB_Acv_Fault */
|
|
0x0181, /* ITB_Miss_Fault */
|
|
0x0181, /* ITB_Fault_Fault */
|
|
0x0081, /* ITB_Acv_Fault */
|
|
0x0481, /* Unimplemented_Opcode_Fault */
|
|
0x0581, /* Fen_Fault */
|
|
0x2001, /* Pal_Fault */
|
|
0x0501, /* Integer_Overflow_Fault: maps to Arithmetic_Fault */
|
|
};
|
|
|
|
const int AlphaISA::reg_redir[AlphaISA::NumIntRegs] = {
|
|
/* 0 */ 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* 8 */ 1, 1, 1, 1, 1, 1, 1, 0,
|
|
/* 16 */ 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* 24 */ 0, 1, 0, 0, 0, 0, 0, 0 };
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
//
|
|
//
|
|
//
|
|
void
|
|
AlphaISA::initIPRs(RegFile *regs)
|
|
{
|
|
uint64_t *ipr = regs->ipr;
|
|
|
|
bzero((char *)ipr, NumInternalProcRegs * sizeof(InternalProcReg));
|
|
ipr[IPR_PAL_BASE] = PAL_BASE;
|
|
ipr[IPR_MCSR] = 0x6;
|
|
}
|
|
|
|
|
|
template <class XC>
|
|
void
|
|
AlphaISA::processInterrupts(XC *xc)
|
|
{
|
|
//Check if there are any outstanding interrupts
|
|
//Handle the interrupts
|
|
int ipl = 0;
|
|
int summary = 0;
|
|
IntReg *ipr = xc->getIprPtr();
|
|
|
|
check_interrupts = 0;
|
|
|
|
if (ipr[IPR_ASTRR])
|
|
panic("asynchronous traps not implemented\n");
|
|
|
|
if (ipr[IPR_SIRR]) {
|
|
for (int i = INTLEVEL_SOFTWARE_MIN;
|
|
i < INTLEVEL_SOFTWARE_MAX; i++) {
|
|
if (ipr[IPR_SIRR] & (ULL(1) << i)) {
|
|
// See table 4-19 of the 21164 hardware reference
|
|
ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1;
|
|
summary |= (ULL(1) << i);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t interrupts = xc->intr_status();
|
|
|
|
if (interrupts) {
|
|
for (int i = INTLEVEL_EXTERNAL_MIN;
|
|
i < INTLEVEL_EXTERNAL_MAX; i++) {
|
|
if (interrupts & (ULL(1) << i)) {
|
|
// See table 4-19 of the 21164 hardware reference
|
|
ipl = i;
|
|
summary |= (ULL(1) << i);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ipl && ipl > ipr[IPR_IPLR]) {
|
|
ipr[IPR_ISR] = summary;
|
|
ipr[IPR_INTID] = ipl;
|
|
xc->trap(Interrupt_Fault);
|
|
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
|
|
ipr[IPR_IPLR], ipl, summary);
|
|
}
|
|
|
|
}
|
|
|
|
template <class XC>
|
|
void
|
|
AlphaISA::zeroRegisters(XC *xc)
|
|
{
|
|
// Insure ISA semantics
|
|
// (no longer very clean due to the change in setIntReg() in the
|
|
// cpu model. Consider changing later.)
|
|
xc->xc->setIntReg(ZeroReg, 0);
|
|
xc->xc->setFloatRegDouble(ZeroReg, 0.0);
|
|
}
|
|
|
|
void
|
|
ExecContext::ev5_trap(Fault fault)
|
|
{
|
|
DPRINTF(Fault, "Fault %s at PC: %#x\n", FaultName(fault), regs.pc);
|
|
cpu->recordEvent(csprintf("Fault %s", FaultName(fault)));
|
|
|
|
assert(!misspeculating());
|
|
kernelStats->fault(fault);
|
|
|
|
if (fault == Arithmetic_Fault)
|
|
panic("Arithmetic traps are unimplemented!");
|
|
|
|
AlphaISA::InternalProcReg *ipr = regs.ipr;
|
|
|
|
// exception restart address
|
|
if (fault != Interrupt_Fault || !PC_PAL(regs.pc))
|
|
ipr[AlphaISA::IPR_EXC_ADDR] = regs.pc;
|
|
|
|
if (fault == Pal_Fault || fault == Arithmetic_Fault /* ||
|
|
fault == Interrupt_Fault && !PC_PAL(regs.pc) */) {
|
|
// traps... skip faulting instruction
|
|
ipr[AlphaISA::IPR_EXC_ADDR] += 4;
|
|
}
|
|
|
|
if (!PC_PAL(regs.pc))
|
|
AlphaISA::swap_palshadow(®s, true);
|
|
|
|
regs.pc = ipr[AlphaISA::IPR_PAL_BASE] + AlphaISA::fault_addr[fault];
|
|
regs.npc = regs.pc + sizeof(MachInst);
|
|
}
|
|
|
|
|
|
void
|
|
AlphaISA::intr_post(RegFile *regs, Fault fault, Addr pc)
|
|
{
|
|
InternalProcReg *ipr = regs->ipr;
|
|
bool use_pc = (fault == No_Fault);
|
|
|
|
if (fault == Arithmetic_Fault)
|
|
panic("arithmetic faults NYI...");
|
|
|
|
// compute exception restart address
|
|
if (use_pc || fault == Pal_Fault || fault == Arithmetic_Fault) {
|
|
// traps... skip faulting instruction
|
|
ipr[IPR_EXC_ADDR] = regs->pc + 4;
|
|
} else {
|
|
// fault, post fault at excepting instruction
|
|
ipr[IPR_EXC_ADDR] = regs->pc;
|
|
}
|
|
|
|
// jump to expection address (PAL PC bit set here as well...)
|
|
if (!use_pc)
|
|
regs->npc = ipr[IPR_PAL_BASE] + fault_addr[fault];
|
|
else
|
|
regs->npc = ipr[IPR_PAL_BASE] + pc;
|
|
|
|
// that's it! (orders of magnitude less painful than x86)
|
|
}
|
|
|
|
bool AlphaISA::check_interrupts = false;
|
|
|
|
Fault
|
|
ExecContext::hwrei()
|
|
{
|
|
uint64_t *ipr = regs.ipr;
|
|
|
|
if (!PC_PAL(regs.pc))
|
|
return Unimplemented_Opcode_Fault;
|
|
|
|
setNextPC(ipr[AlphaISA::IPR_EXC_ADDR]);
|
|
|
|
if (!misspeculating()) {
|
|
kernelStats->hwrei();
|
|
|
|
if ((ipr[AlphaISA::IPR_EXC_ADDR] & 1) == 0)
|
|
AlphaISA::swap_palshadow(®s, false);
|
|
|
|
AlphaISA::check_interrupts = true;
|
|
}
|
|
|
|
// FIXME: XXX check for interrupts? XXX
|
|
return No_Fault;
|
|
}
|
|
|
|
uint64_t
|
|
ExecContext::readIpr(int idx, Fault &fault)
|
|
{
|
|
uint64_t *ipr = regs.ipr;
|
|
uint64_t retval = 0; // return value, default 0
|
|
|
|
switch (idx) {
|
|
case AlphaISA::IPR_PALtemp0:
|
|
case AlphaISA::IPR_PALtemp1:
|
|
case AlphaISA::IPR_PALtemp2:
|
|
case AlphaISA::IPR_PALtemp3:
|
|
case AlphaISA::IPR_PALtemp4:
|
|
case AlphaISA::IPR_PALtemp5:
|
|
case AlphaISA::IPR_PALtemp6:
|
|
case AlphaISA::IPR_PALtemp7:
|
|
case AlphaISA::IPR_PALtemp8:
|
|
case AlphaISA::IPR_PALtemp9:
|
|
case AlphaISA::IPR_PALtemp10:
|
|
case AlphaISA::IPR_PALtemp11:
|
|
case AlphaISA::IPR_PALtemp12:
|
|
case AlphaISA::IPR_PALtemp13:
|
|
case AlphaISA::IPR_PALtemp14:
|
|
case AlphaISA::IPR_PALtemp15:
|
|
case AlphaISA::IPR_PALtemp16:
|
|
case AlphaISA::IPR_PALtemp17:
|
|
case AlphaISA::IPR_PALtemp18:
|
|
case AlphaISA::IPR_PALtemp19:
|
|
case AlphaISA::IPR_PALtemp20:
|
|
case AlphaISA::IPR_PALtemp21:
|
|
case AlphaISA::IPR_PALtemp22:
|
|
case AlphaISA::IPR_PALtemp23:
|
|
case AlphaISA::IPR_PAL_BASE:
|
|
|
|
case AlphaISA::IPR_IVPTBR:
|
|
case AlphaISA::IPR_DC_MODE:
|
|
case AlphaISA::IPR_MAF_MODE:
|
|
case AlphaISA::IPR_ISR:
|
|
case AlphaISA::IPR_EXC_ADDR:
|
|
case AlphaISA::IPR_IC_PERR_STAT:
|
|
case AlphaISA::IPR_DC_PERR_STAT:
|
|
case AlphaISA::IPR_MCSR:
|
|
case AlphaISA::IPR_ASTRR:
|
|
case AlphaISA::IPR_ASTER:
|
|
case AlphaISA::IPR_SIRR:
|
|
case AlphaISA::IPR_ICSR:
|
|
case AlphaISA::IPR_ICM:
|
|
case AlphaISA::IPR_DTB_CM:
|
|
case AlphaISA::IPR_IPLR:
|
|
case AlphaISA::IPR_INTID:
|
|
case AlphaISA::IPR_PMCTR:
|
|
// no side-effect
|
|
retval = ipr[idx];
|
|
break;
|
|
|
|
case AlphaISA::IPR_CC:
|
|
retval |= ipr[idx] & ULL(0xffffffff00000000);
|
|
retval |= curTick & ULL(0x00000000ffffffff);
|
|
break;
|
|
|
|
case AlphaISA::IPR_VA:
|
|
retval = ipr[idx];
|
|
break;
|
|
|
|
case AlphaISA::IPR_VA_FORM:
|
|
case AlphaISA::IPR_MM_STAT:
|
|
case AlphaISA::IPR_IFAULT_VA_FORM:
|
|
case AlphaISA::IPR_EXC_MASK:
|
|
case AlphaISA::IPR_EXC_SUM:
|
|
retval = ipr[idx];
|
|
break;
|
|
|
|
case AlphaISA::IPR_DTB_PTE:
|
|
{
|
|
AlphaISA::PTE &pte = dtb->index(!misspeculating());
|
|
|
|
retval |= ((u_int64_t)pte.ppn & ULL(0x7ffffff)) << 32;
|
|
retval |= ((u_int64_t)pte.xre & ULL(0xf)) << 8;
|
|
retval |= ((u_int64_t)pte.xwe & ULL(0xf)) << 12;
|
|
retval |= ((u_int64_t)pte.fonr & ULL(0x1)) << 1;
|
|
retval |= ((u_int64_t)pte.fonw & ULL(0x1))<< 2;
|
|
retval |= ((u_int64_t)pte.asma & ULL(0x1)) << 4;
|
|
retval |= ((u_int64_t)pte.asn & ULL(0x7f)) << 57;
|
|
}
|
|
break;
|
|
|
|
// write only registers
|
|
case AlphaISA::IPR_HWINT_CLR:
|
|
case AlphaISA::IPR_SL_XMIT:
|
|
case AlphaISA::IPR_DC_FLUSH:
|
|
case AlphaISA::IPR_IC_FLUSH:
|
|
case AlphaISA::IPR_ALT_MODE:
|
|
case AlphaISA::IPR_DTB_IA:
|
|
case AlphaISA::IPR_DTB_IAP:
|
|
case AlphaISA::IPR_ITB_IA:
|
|
case AlphaISA::IPR_ITB_IAP:
|
|
fault = Unimplemented_Opcode_Fault;
|
|
break;
|
|
|
|
default:
|
|
// invalid IPR
|
|
fault = Unimplemented_Opcode_Fault;
|
|
break;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
// Cause the simulator to break when changing to the following IPL
|
|
int break_ipl = -1;
|
|
#endif
|
|
|
|
Fault
|
|
ExecContext::setIpr(int idx, uint64_t val)
|
|
{
|
|
uint64_t *ipr = regs.ipr;
|
|
uint64_t old;
|
|
|
|
if (misspeculating())
|
|
return No_Fault;
|
|
|
|
switch (idx) {
|
|
case AlphaISA::IPR_PALtemp0:
|
|
case AlphaISA::IPR_PALtemp1:
|
|
case AlphaISA::IPR_PALtemp2:
|
|
case AlphaISA::IPR_PALtemp3:
|
|
case AlphaISA::IPR_PALtemp4:
|
|
case AlphaISA::IPR_PALtemp5:
|
|
case AlphaISA::IPR_PALtemp6:
|
|
case AlphaISA::IPR_PALtemp7:
|
|
case AlphaISA::IPR_PALtemp8:
|
|
case AlphaISA::IPR_PALtemp9:
|
|
case AlphaISA::IPR_PALtemp10:
|
|
case AlphaISA::IPR_PALtemp11:
|
|
case AlphaISA::IPR_PALtemp12:
|
|
case AlphaISA::IPR_PALtemp13:
|
|
case AlphaISA::IPR_PALtemp14:
|
|
case AlphaISA::IPR_PALtemp15:
|
|
case AlphaISA::IPR_PALtemp16:
|
|
case AlphaISA::IPR_PALtemp17:
|
|
case AlphaISA::IPR_PALtemp18:
|
|
case AlphaISA::IPR_PALtemp19:
|
|
case AlphaISA::IPR_PALtemp20:
|
|
case AlphaISA::IPR_PALtemp21:
|
|
case AlphaISA::IPR_PALtemp22:
|
|
case AlphaISA::IPR_PAL_BASE:
|
|
case AlphaISA::IPR_IC_PERR_STAT:
|
|
case AlphaISA::IPR_DC_PERR_STAT:
|
|
case AlphaISA::IPR_PMCTR:
|
|
// write entire quad w/ no side-effect
|
|
ipr[idx] = val;
|
|
break;
|
|
|
|
case AlphaISA::IPR_CC_CTL:
|
|
// This IPR resets the cycle counter. We assume this only
|
|
// happens once... let's verify that.
|
|
assert(ipr[idx] == 0);
|
|
ipr[idx] = 1;
|
|
break;
|
|
|
|
case AlphaISA::IPR_CC:
|
|
// This IPR only writes the upper 64 bits. It's ok to write
|
|
// all 64 here since we mask out the lower 32 in rpcc (see
|
|
// isa_desc).
|
|
ipr[idx] = val;
|
|
break;
|
|
|
|
case AlphaISA::IPR_PALtemp23:
|
|
// write entire quad w/ no side-effect
|
|
old = ipr[idx];
|
|
ipr[idx] = val;
|
|
kernelStats->context(old, val);
|
|
break;
|
|
|
|
case AlphaISA::IPR_DTB_PTE:
|
|
// write entire quad w/ no side-effect, tag is forthcoming
|
|
ipr[idx] = val;
|
|
break;
|
|
|
|
case AlphaISA::IPR_EXC_ADDR:
|
|
// second least significant bit in PC is always zero
|
|
ipr[idx] = val & ~2;
|
|
break;
|
|
|
|
case AlphaISA::IPR_ASTRR:
|
|
case AlphaISA::IPR_ASTER:
|
|
// only write least significant four bits - privilege mask
|
|
ipr[idx] = val & 0xf;
|
|
break;
|
|
|
|
case AlphaISA::IPR_IPLR:
|
|
#ifdef DEBUG
|
|
if (break_ipl != -1 && break_ipl == (val & 0x1f))
|
|
debug_break();
|
|
#endif
|
|
|
|
// only write least significant five bits - interrupt level
|
|
ipr[idx] = val & 0x1f;
|
|
kernelStats->swpipl(ipr[idx]);
|
|
break;
|
|
|
|
case AlphaISA::IPR_DTB_CM:
|
|
if (val & 0x18)
|
|
kernelStats->mode(Kernel::user);
|
|
else
|
|
kernelStats->mode(Kernel::kernel);
|
|
|
|
case AlphaISA::IPR_ICM:
|
|
// only write two mode bits - processor mode
|
|
ipr[idx] = val & 0x18;
|
|
break;
|
|
|
|
case AlphaISA::IPR_ALT_MODE:
|
|
// only write two mode bits - processor mode
|
|
ipr[idx] = val & 0x18;
|
|
break;
|
|
|
|
case AlphaISA::IPR_MCSR:
|
|
// more here after optimization...
|
|
ipr[idx] = val;
|
|
break;
|
|
|
|
case AlphaISA::IPR_SIRR:
|
|
// only write software interrupt mask
|
|
ipr[idx] = val & 0x7fff0;
|
|
break;
|
|
|
|
case AlphaISA::IPR_ICSR:
|
|
ipr[idx] = val & ULL(0xffffff0300);
|
|
break;
|
|
|
|
case AlphaISA::IPR_IVPTBR:
|
|
case AlphaISA::IPR_MVPTBR:
|
|
ipr[idx] = val & ULL(0xffffffffc0000000);
|
|
break;
|
|
|
|
case AlphaISA::IPR_DC_TEST_CTL:
|
|
ipr[idx] = val & 0x1ffb;
|
|
break;
|
|
|
|
case AlphaISA::IPR_DC_MODE:
|
|
case AlphaISA::IPR_MAF_MODE:
|
|
ipr[idx] = val & 0x3f;
|
|
break;
|
|
|
|
case AlphaISA::IPR_ITB_ASN:
|
|
ipr[idx] = val & 0x7f0;
|
|
break;
|
|
|
|
case AlphaISA::IPR_DTB_ASN:
|
|
ipr[idx] = val & ULL(0xfe00000000000000);
|
|
break;
|
|
|
|
case AlphaISA::IPR_EXC_SUM:
|
|
case AlphaISA::IPR_EXC_MASK:
|
|
// any write to this register clears it
|
|
ipr[idx] = 0;
|
|
break;
|
|
|
|
case AlphaISA::IPR_INTID:
|
|
case AlphaISA::IPR_SL_RCV:
|
|
case AlphaISA::IPR_MM_STAT:
|
|
case AlphaISA::IPR_ITB_PTE_TEMP:
|
|
case AlphaISA::IPR_DTB_PTE_TEMP:
|
|
// read-only registers
|
|
return Unimplemented_Opcode_Fault;
|
|
|
|
case AlphaISA::IPR_HWINT_CLR:
|
|
case AlphaISA::IPR_SL_XMIT:
|
|
case AlphaISA::IPR_DC_FLUSH:
|
|
case AlphaISA::IPR_IC_FLUSH:
|
|
// the following are write only
|
|
ipr[idx] = val;
|
|
break;
|
|
|
|
case AlphaISA::IPR_DTB_IA:
|
|
// really a control write
|
|
ipr[idx] = 0;
|
|
|
|
dtb->flushAll();
|
|
break;
|
|
|
|
case AlphaISA::IPR_DTB_IAP:
|
|
// really a control write
|
|
ipr[idx] = 0;
|
|
|
|
dtb->flushProcesses();
|
|
break;
|
|
|
|
case AlphaISA::IPR_DTB_IS:
|
|
// really a control write
|
|
ipr[idx] = val;
|
|
|
|
dtb->flushAddr(val, DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]));
|
|
break;
|
|
|
|
case AlphaISA::IPR_DTB_TAG: {
|
|
struct AlphaISA::PTE pte;
|
|
|
|
// FIXME: granularity hints NYI...
|
|
if (DTB_PTE_GH(ipr[AlphaISA::IPR_DTB_PTE]) != 0)
|
|
panic("PTE GH field != 0");
|
|
|
|
// write entire quad
|
|
ipr[idx] = val;
|
|
|
|
// construct PTE for new entry
|
|
pte.ppn = DTB_PTE_PPN(ipr[AlphaISA::IPR_DTB_PTE]);
|
|
pte.xre = DTB_PTE_XRE(ipr[AlphaISA::IPR_DTB_PTE]);
|
|
pte.xwe = DTB_PTE_XWE(ipr[AlphaISA::IPR_DTB_PTE]);
|
|
pte.fonr = DTB_PTE_FONR(ipr[AlphaISA::IPR_DTB_PTE]);
|
|
pte.fonw = DTB_PTE_FONW(ipr[AlphaISA::IPR_DTB_PTE]);
|
|
pte.asma = DTB_PTE_ASMA(ipr[AlphaISA::IPR_DTB_PTE]);
|
|
pte.asn = DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]);
|
|
|
|
// insert new TAG/PTE value into data TLB
|
|
dtb->insert(val, pte);
|
|
}
|
|
break;
|
|
|
|
case AlphaISA::IPR_ITB_PTE: {
|
|
struct AlphaISA::PTE pte;
|
|
|
|
// FIXME: granularity hints NYI...
|
|
if (ITB_PTE_GH(val) != 0)
|
|
panic("PTE GH field != 0");
|
|
|
|
// write entire quad
|
|
ipr[idx] = val;
|
|
|
|
// construct PTE for new entry
|
|
pte.ppn = ITB_PTE_PPN(val);
|
|
pte.xre = ITB_PTE_XRE(val);
|
|
pte.xwe = 0;
|
|
pte.fonr = ITB_PTE_FONR(val);
|
|
pte.fonw = ITB_PTE_FONW(val);
|
|
pte.asma = ITB_PTE_ASMA(val);
|
|
pte.asn = ITB_ASN_ASN(ipr[AlphaISA::IPR_ITB_ASN]);
|
|
|
|
// insert new TAG/PTE value into data TLB
|
|
itb->insert(ipr[AlphaISA::IPR_ITB_TAG], pte);
|
|
}
|
|
break;
|
|
|
|
case AlphaISA::IPR_ITB_IA:
|
|
// really a control write
|
|
ipr[idx] = 0;
|
|
|
|
itb->flushAll();
|
|
break;
|
|
|
|
case AlphaISA::IPR_ITB_IAP:
|
|
// really a control write
|
|
ipr[idx] = 0;
|
|
|
|
itb->flushProcesses();
|
|
break;
|
|
|
|
case AlphaISA::IPR_ITB_IS:
|
|
// really a control write
|
|
ipr[idx] = val;
|
|
|
|
itb->flushAddr(val, ITB_ASN_ASN(ipr[AlphaISA::IPR_ITB_ASN]));
|
|
break;
|
|
|
|
default:
|
|
// invalid IPR
|
|
return Unimplemented_Opcode_Fault;
|
|
}
|
|
|
|
// no error...
|
|
return No_Fault;
|
|
}
|
|
|
|
/**
|
|
* Check for special simulator handling of specific PAL calls.
|
|
* If return value is false, actual PAL call will be suppressed.
|
|
*/
|
|
bool
|
|
ExecContext::simPalCheck(int palFunc)
|
|
{
|
|
kernelStats->callpal(palFunc);
|
|
|
|
switch (palFunc) {
|
|
case PAL::halt:
|
|
halt();
|
|
if (--System::numSystemsRunning == 0)
|
|
new SimExitEvent("all cpus halted");
|
|
break;
|
|
|
|
case PAL::bpt:
|
|
case PAL::bugchk:
|
|
if (system->breakpoint())
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//Forward instantiation for FastCPU object
|
|
template
|
|
void AlphaISA::processInterrupts(FastCPU *xc);
|
|
|
|
//Forward instantiation for FastCPU object
|
|
template
|
|
void AlphaISA::zeroRegisters(FastCPU *xc);
|
|
|
|
#endif // FULL_SYSTEM
|