95b782f600
This patch edits the configuration files so that x86 simulations can have more than 3GB of memory. It also corrects a bug in the MemConfig.py script.
193 lines
7.5 KiB
Python
193 lines
7.5 KiB
Python
# Copyright (c) 2013 ARM Limited
|
|
# All rights reserved.
|
|
#
|
|
# The license below extends only to copyright in the software and shall
|
|
# not be construed as granting a license to any other intellectual
|
|
# property including but not limited to intellectual property relating
|
|
# to a hardware implementation of the functionality of the software
|
|
# licensed hereunder. You may use the software subject to the license
|
|
# terms below provided that you ensure that this notice is replicated
|
|
# unmodified and in its entirety in all distributions of the software,
|
|
# modified or unmodified, in source code or in binary form.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are
|
|
# met: redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer;
|
|
# redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution;
|
|
# neither the name of the copyright holders nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
# Authors: Andreas Sandberg
|
|
# Andreas Hansson
|
|
|
|
import m5.objects
|
|
import inspect
|
|
import sys
|
|
from textwrap import TextWrapper
|
|
|
|
# Dictionary of mapping names of real memory controller models to
|
|
# classes.
|
|
_mem_classes = {}
|
|
|
|
# Memory aliases. We make sure they exist before we add them to the
|
|
# fina; list. A target may be specified as a tuple, in which case the
|
|
# first available memory controller model in the tuple will be used.
|
|
_mem_aliases_all = [
|
|
("simple_mem", "SimpleMemory"),
|
|
("ddr3_1600_x64", "DDR3_1600_x64"),
|
|
("lpddr2_s4_1066_x32", "LPDDR2_S4_1066_x32"),
|
|
("lpddr3_1600_x32", "LPDDR3_1600_x32"),
|
|
("wio_200_x128", "WideIO_200_x128"),
|
|
]
|
|
|
|
# Filtered list of aliases. Only aliases for existing memory
|
|
# controllers exist in this list.
|
|
_mem_aliases = {}
|
|
|
|
|
|
def is_mem_class(cls):
|
|
"""Determine if a class is a memory controller that can be instantiated"""
|
|
|
|
# We can't use the normal inspect.isclass because the ParamFactory
|
|
# and ProxyFactory classes have a tendency to confuse it.
|
|
try:
|
|
return issubclass(cls, m5.objects.AbstractMemory) and \
|
|
not cls.abstract
|
|
except TypeError:
|
|
return False
|
|
|
|
def get(name):
|
|
"""Get a memory class from a user provided class name or alias."""
|
|
|
|
real_name = _mem_aliases.get(name, name)
|
|
|
|
try:
|
|
mem_class = _mem_classes[real_name]
|
|
return mem_class
|
|
except KeyError:
|
|
print "%s is not a valid memory controller." % (name,)
|
|
sys.exit(1)
|
|
|
|
def print_mem_list():
|
|
"""Print a list of available memory classes including their aliases."""
|
|
|
|
print "Available memory classes:"
|
|
doc_wrapper = TextWrapper(initial_indent="\t\t", subsequent_indent="\t\t")
|
|
for name, cls in _mem_classes.items():
|
|
print "\t%s" % name
|
|
|
|
# Try to extract the class documentation from the class help
|
|
# string.
|
|
doc = inspect.getdoc(cls)
|
|
if doc:
|
|
for line in doc_wrapper.wrap(doc):
|
|
print line
|
|
|
|
if _mem_aliases:
|
|
print "\nMemory aliases:"
|
|
for alias, target in _mem_aliases.items():
|
|
print "\t%s => %s" % (alias, target)
|
|
|
|
def mem_names():
|
|
"""Return a list of valid memory names."""
|
|
return _mem_classes.keys() + _mem_aliases.keys()
|
|
|
|
# Add all memory controllers in the object hierarchy.
|
|
for name, cls in inspect.getmembers(m5.objects, is_mem_class):
|
|
_mem_classes[name] = cls
|
|
|
|
for alias, target in _mem_aliases_all:
|
|
if isinstance(target, tuple):
|
|
# Some aliases contain a list of memory controller models
|
|
# sorted in priority order. Use the first target that's
|
|
# available.
|
|
for t in target:
|
|
if t in _mem_classes:
|
|
_mem_aliases[alias] = t
|
|
break
|
|
elif target in _mem_classes:
|
|
# Normal alias
|
|
_mem_aliases[alias] = target
|
|
|
|
def config_mem(options, system):
|
|
"""
|
|
Create the memory controllers based on the options and attach them.
|
|
|
|
If requested, we make a multi-channel configuration of the
|
|
selected memory controller class by creating multiple instances of
|
|
the specific class. The individual controllers have their
|
|
parameters set such that the address range is interleaved between
|
|
them.
|
|
"""
|
|
|
|
nbr_mem_ctrls = options.mem_channels
|
|
import math
|
|
from m5.util import fatal
|
|
intlv_bits = int(math.log(nbr_mem_ctrls, 2))
|
|
if 2 ** intlv_bits != nbr_mem_ctrls:
|
|
fatal("Number of memory channels must be a power of 2")
|
|
cls = get(options.mem_type)
|
|
mem_ctrls = []
|
|
|
|
# The default behaviour is to interleave on cache line granularity
|
|
cache_line_bit = int(math.log(system.cache_line_size.value, 2)) - 1
|
|
intlv_low_bit = cache_line_bit
|
|
|
|
# For every range (most systems will only have one), create an
|
|
# array of controllers and set their parameters to match their
|
|
# address mapping in the case of a DRAM
|
|
for r in system.mem_ranges:
|
|
for i in xrange(nbr_mem_ctrls):
|
|
# Create an instance so we can figure out the address
|
|
# mapping and row-buffer size
|
|
ctrl = cls()
|
|
|
|
# Only do this for DRAMs
|
|
if issubclass(cls, m5.objects.SimpleDRAM):
|
|
# Inform each controller how many channels to account
|
|
# for
|
|
ctrl.channels = nbr_mem_ctrls
|
|
|
|
# If the channel bits are appearing after the column
|
|
# bits, we need to add the appropriate number of bits
|
|
# for the row buffer size
|
|
if ctrl.addr_mapping.value == 'RaBaChCo':
|
|
# This computation only really needs to happen
|
|
# once, but as we rely on having an instance we
|
|
# end up having to repeat it for each and every
|
|
# one
|
|
rowbuffer_size = ctrl.device_rowbuffer_size.value * \
|
|
ctrl.devices_per_rank.value
|
|
|
|
intlv_low_bit = int(math.log(rowbuffer_size, 2)) - 1
|
|
|
|
# We got all we need to configure the appropriate address
|
|
# range
|
|
ctrl.range = m5.objects.AddrRange(r.start, size = r.size(),
|
|
intlvHighBit = \
|
|
intlv_low_bit + intlv_bits,
|
|
intlvBits = intlv_bits,
|
|
intlvMatch = i)
|
|
mem_ctrls.append(ctrl)
|
|
|
|
system.mem_ctrls = mem_ctrls
|
|
|
|
# Connect the controllers to the membus
|
|
for i in xrange(len(system.mem_ctrls)):
|
|
system.mem_ctrls[i].port = system.membus.master
|