gem5/src/sim/clock_domain.hh
Andreas Sandberg 76cd4393c0 sim: Refactor the serialization base class
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

  * Add a set of APIs to serialize into a subsection of the current
    object. Previously, objects that needed this functionality would
    use ad-hoc solutions using nameOut() and section name
    generation. In the new world, an object that implements the
    interface has the methods serializeSection() and
    unserializeSection() that serialize into a named /subsection/ of
    the current object. Calling serialize() serializes an object into
    the current section.

  * Move the name() method from Serializable to SimObject as it is no
    longer needed for serialization. The fully qualified section name
    is generated by the main serialization code on the fly as objects
    serialize sub-objects.

  * Add a scoped ScopedCheckpointSection helper class. Some objects
    need to serialize data structures, that are not deriving from
    Serializable, into subsections. Previously, this was done using
    nameOut() and manual section name generation. To simplify this,
    this changeset introduces a ScopedCheckpointSection() helper
    class. When this class is instantiated, it adds a new /subsection/
    and subsequent serialization calls during the lifetime of this
    helper class happen inside this section (or a subsection in case
    of nested sections).

  * The serialize() call is now const which prevents accidental state
    manipulation during serialization. Objects that rely on modifying
    state can use the serializeOld() call instead. The default
    implementation simply calls serialize(). Note: The old-style calls
    need to be explicitly called using the
    serializeOld()/serializeSectionOld() style APIs. These are used by
    default when serializing SimObjects.

  * Both the input and output checkpoints now use their own named
    types. This hides underlying checkpoint implementation from
    objects that need checkpointing and makes it easier to change the
    underlying checkpoint storage code.
2015-07-07 09:51:03 +01:00

304 lines
8.9 KiB
C++

/*
* Copyright (c) 2013-2014 ARM Limited
* Copyright (c) 2013 Cornell University
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Vasileios Spiliopoulos
* Akash Bagdia
* Christopher Torng
* Stephan Diestelhorst
*/
/**
* @file
* ClockDomain declarations.
*/
#ifndef __SIM_CLOCK_DOMAIN_HH__
#define __SIM_CLOCK_DOMAIN_HH__
#include <algorithm>
#include "base/statistics.hh"
#include "params/ClockDomain.hh"
#include "params/DerivedClockDomain.hh"
#include "params/SrcClockDomain.hh"
#include "sim/sim_object.hh"
/**
* Forward declaration
*/
class DerivedClockDomain;
class VoltageDomain;
class ClockedObject;
/**
* The ClockDomain provides clock to group of clocked objects bundled
* under the same clock domain. The clock domains, in turn, are
* grouped into voltage domains. The clock domains provide support for
* a hierarchial structure with source and derived domains.
*/
class ClockDomain : public SimObject
{
private:
/**
* Stat to report clock period of clock domain
*/
Stats::Value currentClock;
protected:
/**
* Pre-computed clock period in ticks. This is populated by the
* inheriting classes based on how their period is determined.
*/
Tick _clockPeriod;
/**
* Voltage domain this clock domain belongs to
*/
VoltageDomain *_voltageDomain;
/**
* Pointers to potential derived clock domains so we can propagate
* changes.
*/
std::vector<DerivedClockDomain*> children;
/**
* Pointers to members of this clock domain, so that when the clock
* period changes, we can update each member's tick.
*/
std::vector<ClockedObject*> members;
public:
typedef ClockDomainParams Params;
ClockDomain(const Params *p, VoltageDomain *voltage_domain) :
SimObject(p),
_clockPeriod(0),
_voltageDomain(voltage_domain) {}
void regStats();
/**
* Get the clock period.
*
* @return Clock period in ticks
*/
Tick clockPeriod() const { return _clockPeriod; }
/**
* Register a ClockedObject to this ClockDomain.
*
* @param ClockedObject to add as a member
*/
void registerWithClockDomain(ClockedObject *c)
{
assert(c != NULL);
assert(std::find(members.begin(), members.end(), c) == members.end());
members.push_back(c);
}
/**
* Get the voltage domain.
*
* @return Voltage domain this clock domain belongs to
*/
inline VoltageDomain *voltageDomain() const { return _voltageDomain; }
/**
* Get the current voltage this clock domain operates at.
*
* @return Voltage applied to the clock domain
*/
double voltage() const;
/**
* Add a derived domain.
*
* @param Derived domain to add as a child
*/
void addDerivedDomain(DerivedClockDomain *clock_domain)
{ children.push_back(clock_domain); }
};
/**
* The source clock domains provides the notion of a clock domain that is
* connected to a tunable clock source. It maintains the clock period and
* provides methods for setting/getting the clock and configuration parameters
* for clock domain that handler is going to manage. This includes frequency
* values at various performance levels, domain id, and current performance
* level. Note that a performance level as requested by the software corresponds
* to one of the frequency operational points the domain can operate at.
*/
class SrcClockDomain : public ClockDomain
{
public:
typedef SrcClockDomainParams Params;
SrcClockDomain(const Params *p);
/**
* Set new clock value
* @param clock The new clock period in ticks
*/
void clockPeriod(Tick clock_period);
// Explicitly import the otherwise hidden clockPeriod
using ClockDomain::clockPeriod;
typedef int32_t DomainID;
static const DomainID emptyDomainID = -1;
/**
* @return the domainID of the domain
*/
uint32_t domainID() const { return _domainID; }
typedef uint32_t PerfLevel;
/**
* Checks whether the performance level requested exists in the current
* domain configuration
*
* @param the target performance level of the domain
*
* @return validity status of the given performance level
*/
bool validPerfLevel(PerfLevel perf_level) const {
return perf_level < numPerfLevels();
}
/**
* Sets the current performance level of the domain
*
* @param perf_level the target performance level
*/
void perfLevel(PerfLevel perf_level);
/**
* @return the current performance level of the domain
*/
PerfLevel perfLevel() const { return _perfLevel; }
/**
* Get the number of available performance levels for this clock domain.
*
* @return Number of perf levels configured for this domain.
*/
PerfLevel numPerfLevels() const {return freqOpPoints.size();}
/**
* @returns the clock period (expressed in ticks) for the current
* performance level
*/
Tick clkPeriodAtPerfLevel() const { return freqOpPoints[perfLevel()]; }
Tick clkPeriodAtPerfLevel(PerfLevel perf_level) const
{
assert(validPerfLevel(perf_level));
return freqOpPoints[perf_level];
}
void startup();
void serialize(CheckpointOut &cp) const M5_ATTR_OVERRIDE;
void unserialize(CheckpointIn &cp) M5_ATTR_OVERRIDE;
private:
/**
* List of possible frequency operational points, should be in
* descending order
* An empty list corresponds to default frequency specified for its
* clock domain, overall implying NO DVFS
*/
const std::vector<Tick> freqOpPoints;
/**
* Software recognizable id number for the domain, should be unique for
* each domain
*/
const uint32_t _domainID;
/**
* Current performance level the domain is set to.
* The performance level corresponds to one selected frequency (and related
* voltage) from the supplied list of frequencies, with perfLevel = 0 being
* the fastest performance state.
*/
PerfLevel _perfLevel;
};
/**
* The derived clock domains provides the notion of a clock domain
* that is connected to a parent clock domain that can either be a
* source clock domain or a derived clock domain. It maintains the
* clock divider and provides methods for getting the clock.
*/
class DerivedClockDomain: public ClockDomain
{
public:
typedef DerivedClockDomainParams Params;
DerivedClockDomain(const Params *p);
/**
* Called by the parent clock domain to propagate changes. This
* also involves propagating the change further to any children of
* the derived domain itself.
*/
void updateClockPeriod();
private:
/**
* Reference to the parent clock domain this clock domain derives
* its clock period from
*/
ClockDomain &parent;
/**
* Local clock divider of the domain
*/
const uint64_t clockDivider;
};
#endif