gem5/src/base/cp_annotate.hh
Andreas Sandberg 76cd4393c0 sim: Refactor the serialization base class
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

  * Add a set of APIs to serialize into a subsection of the current
    object. Previously, objects that needed this functionality would
    use ad-hoc solutions using nameOut() and section name
    generation. In the new world, an object that implements the
    interface has the methods serializeSection() and
    unserializeSection() that serialize into a named /subsection/ of
    the current object. Calling serialize() serializes an object into
    the current section.

  * Move the name() method from Serializable to SimObject as it is no
    longer needed for serialization. The fully qualified section name
    is generated by the main serialization code on the fly as objects
    serialize sub-objects.

  * Add a scoped ScopedCheckpointSection helper class. Some objects
    need to serialize data structures, that are not deriving from
    Serializable, into subsections. Previously, this was done using
    nameOut() and manual section name generation. To simplify this,
    this changeset introduces a ScopedCheckpointSection() helper
    class. When this class is instantiated, it adds a new /subsection/
    and subsequent serialization calls during the lifetime of this
    helper class happen inside this section (or a subsection in case
    of nested sections).

  * The serialize() call is now const which prevents accidental state
    manipulation during serialization. Objects that rely on modifying
    state can use the serializeOld() call instead. The default
    implementation simply calls serialize(). Note: The old-style calls
    need to be explicitly called using the
    serializeOld()/serializeSectionOld() style APIs. These are used by
    default when serializing SimObjects.

  * Both the input and output checkpoints now use their own named
    types. This hides underlying checkpoint implementation from
    objects that need checkpointing and makes it easier to change the
    underlying checkpoint storage code.
2015-07-07 09:51:03 +01:00

550 lines
19 KiB
C++

/*
* Copyright (c) 2014 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006-2009 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
*/
#ifndef __BASE__CP_ANNOTATE_HH__
#define __BASE__CP_ANNOTATE_HH__
#include <list>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "base/loader/symtab.hh"
#include "base/hashmap.hh"
#include "base/trace.hh"
#include "base/types.hh"
#include "debug/AnnotateQ.hh"
#include "config/cp_annotate.hh"
#include "config/the_isa.hh"
#include "sim/serialize.hh"
#include "sim/system.hh"
#if CP_ANNOTATE
#include "params/CPA.hh"
#endif
class System;
class ThreadContext;
#if !CP_ANNOTATE
class CPA
{
public:
enum flags {
FL_NONE = 0x00,
FL_HW = 0x01,
FL_BAD = 0x02,
FL_QOPP = 0x04,
FL_WAIT = 0x08,
FL_LINK = 0x10,
FL_RESET = 0x20
};
static CPA *cpa() { return NULL; }
static bool available() { return false; }
bool enabled() { return false; }
void swSmBegin(ThreadContext *tc) { return; }
void swSmEnd(ThreadContext *tc) { return; }
void swExplictBegin(ThreadContext *tc) { return; }
void swAutoBegin(ThreadContext *tc, Addr next_pc) { return; }
void swEnd(ThreadContext *tc) { return; }
void swQ(ThreadContext *tc) { return; }
void swDq(ThreadContext *tc) { return; }
void swPq(ThreadContext *tc) { return; }
void swRq(ThreadContext *tc) { return; }
void swWf(ThreadContext *tc) { return; }
void swWe(ThreadContext *tc) { return; }
void swSq(ThreadContext *tc) { return; }
void swAq(ThreadContext *tc) { return; }
void swLink(ThreadContext *tc) { return; }
void swIdentify(ThreadContext *tc) { return; }
uint64_t swGetId(ThreadContext *tc) { return 0; }
void swSyscallLink(ThreadContext *tc) { return; }
void hwBegin(flags f, System *sys, uint64_t frame, std::string sm,
std::string st) { return; }
void hwQ(flags f, System *sys, uint64_t frame, std::string sm,
std::string q, uint64_t qid, System *q_sys = NULL,
int32_t count = 1) { return; }
void hwDq(flags f, System *sys, uint64_t frame, std::string sm,
std::string q, uint64_t qid, System *q_sys = NULL,
int32_t count = 1) { return; }
void hwPq(flags f, System *sys, uint64_t frame, std::string sm,
std::string q, uint64_t qid, System *q_sys = NULL,
int32_t count = 1) { return; }
void hwRq(flags f, System *sys, uint64_t frame, std::string sm,
std::string q, uint64_t qid, System *q_sys = NULL,
int32_t count = 1) { return; }
void hwWf(flags f, System *sys, uint64_t frame, std::string sm,
std::string q, uint64_t qid, System *q_sys = NULL,
int32_t count = 1) { return; }
void hwWe(flags f, System *sys, uint64_t frame, std::string sm,
std::string q, uint64_t qid, System *q_sys = NULL,
int32_t count = 1) { return; }
};
#else
/**
* Provide a hash function for the CPI Id type
*/
__hash_namespace_begin
template <>
struct hash<std::pair<std::string, uint64_t> >
{
size_t
operator()(const std::pair<std::string, uint64_t>& x) const
{
return hash<std::string>()(x.first);
}
};
__hash_namespace_end
class CPA : SimObject
{
public:
typedef CPAParams Params;
/** The known operations that are written to the annotation output file. */
enum ops {
OP_BEGIN = 0x01,
OP_WAIT_EMPTY = 0x02,
OP_WAIT_FULL = 0x03,
OP_QUEUE = 0x04,
OP_DEQUEUE = 0x05,
OP_SIZE_QUEUE = 0x08,
OP_PEEK = 0x09,
OP_LINK = 0x0A,
OP_IDENT = 0x0B,
OP_RESERVE = 0x0C
};
/** Flags for the various options.*/
enum flags {
/* no flags */
FL_NONE = 0x00,
/* operation was done on hardware */
FL_HW = 0x01,
/* operation should cause a warning when encountered */
FL_BAD = 0x02,
/* Queue like a stack, not a queue */
FL_QOPP = 0x04,
/* Mark HW state as waiting for some non-resource constraint
* (e.g. wait because SM only starts after 10 items are queued) */
FL_WAIT = 0x08,
/* operation is linking to another state machine */
FL_LINK = 0x10,
/* queue should be completely cleared/reset before executing this
* operation */
FL_RESET = 0x20
};
protected:
const Params *
params() const
{
return dynamic_cast<const Params *>(_params);
}
/* struct that is written to the annotation output file */
struct AnnotateData : public Serializable {
Tick time;
uint32_t data;
uint32_t orig_data;
uint16_t sm;
uint16_t stq;
uint8_t op;
uint8_t flag;
uint8_t cpu;
bool dump;
void serialize(CheckpointOut &cp) const M5_ATTR_OVERRIDE;
void unserialize(CheckpointIn &cp) M5_ATTR_OVERRIDE;
};
typedef std::shared_ptr<AnnotateData> AnnDataPtr;
/* header for the annotation file */
struct AnnotateHeader {
uint64_t version;
uint64_t num_recs;
uint64_t key_off;
uint64_t idx_off;
uint32_t key_len;
uint32_t idx_len;
};
AnnotateHeader ah;
std::vector<uint64_t> annotateIdx;
// number of state machines encountered in the simulation
int numSm;
// number of states encountered in the simulation
int numSmt;
// number of states/queues for a given state machine/system respectively
std::vector<int> numSt, numQ;
// number of systems in the simulation
int numSys;
// number of queues in the state machine
int numQs;
// maximum connection id assigned so far
uint64_t conId;
// Convert state strings into state ids
typedef m5::hash_map<std::string, int> SCache;
typedef std::vector<SCache> StCache;
// Convert sm and queue name,id into queue id
typedef std::pair<std::string, uint64_t> Id;
typedef m5::hash_map<Id, int> IdHCache;
typedef std::vector<IdHCache> IdCache;
// Hold mapping of sm and queues to output python
typedef std::vector<std::pair<int, Id> > IdMap;
// System pointer to name,id
typedef std::map<System*, std::pair<std::string, int> > NameCache;
// array of systems each of which is a stack of running sm
typedef std::pair<int, uint64_t> StackId;
typedef std::map<StackId, std::vector<int> > SmStack;
// map of each context and if it's currently in explict state mode
// states are not automatically updated until it leaves
typedef std::map<StackId, bool> SwExpl;
typedef std::map<int,int> IMap;
// List of annotate records have not been written/completed yet
typedef std::list<AnnDataPtr> AnnotateList;
// Maintain link state information
typedef std::map<int, int> LinkMap;
// SC Links
typedef m5::hash_map<Id, AnnDataPtr> ScHCache;
typedef std::vector<ScHCache> ScCache;
AnnotateList data;
// vector indexed by queueid to find current number of elements and bytes
std::vector<int> qSize;
std::vector<int32_t> qBytes;
// Turn state machine string into state machine id (small int)
// Used for outputting key to convert id back into string
SCache smtCache;
// Turn state machine id, state name into state id (small int)
StCache stCache;
// turn system, queue, and queue identify into qid (small int)
// turn system, state, and context into state machine id (small int)
IdCache qCache, smCache;
//Link state machines accross system calls
ScCache scLinks;
// System pointer to name,id
NameCache nameCache;
// Stack of state machines currently nested (should unwind correctly)
SmStack smStack;
// Map of currently outstanding links
LinkMap lnMap;
// If the state machine is currently exculding automatic changes
SwExpl swExpl;
// Last state that a given state machine was in
IMap lastState;
// Hold mapping of sm and queues to output python
IdMap smMap, qMap;
// Items still in queue, used for sanity checking
std::vector<AnnotateList> qData;
void doDq(System *sys, int flags, int cpu, int sm, std::string q, int qi,
int count);
void doQ(System *sys, int flags, int cpu, int sm, std::string q, int qi,
int count);
void doSwSmEnd(System *sys, int cpuid, std::string sm, uint64_t frame);
// Turn a system id, state machine string, state machine id into a small int
// for annotation output
int
getSm(int sysi, std::string si, uint64_t id)
{
int smi;
Id smid = Id(si, id);
smi = smCache[sysi-1][smid];
if (smi == 0) {
smCache[sysi-1][smid] = smi = ++numSm;
assert(smi < 65535);
smMap.push_back(std::make_pair(sysi, smid));
}
return smi;
}
// Turn a state machine string, state string into a small int
// for annotation output
int
getSt(std::string sm, std::string s)
{
int sti, smi;
smi = smtCache[sm];
if (smi == 0)
smi = smtCache[sm] = ++numSmt;
while (stCache.size() < smi) {
//stCache.resize(sm);
stCache.push_back(SCache());
numSt.push_back(0);
}
//assert(stCache.size() == sm);
//assert(numSt.size() == sm);
sti = stCache[smi-1][s];
if (sti == 0)
stCache[smi-1][s] = sti = ++numSt[smi-1];
return sti;
}
// Turn state machine pointer into a smal int for annotation output
int
getSys(System *s)
{
NameCache::iterator i = nameCache.find(s);
if (i == nameCache.end()) {
nameCache[s] = std::make_pair(s->name(), ++numSys);
i = nameCache.find(s);
// might need to put smstackid into map here, but perhaps not
//smStack.push_back(std::vector<int>());
//swExpl.push_back(false);
numQ.push_back(0);
qCache.push_back(IdHCache());
smCache.push_back(IdHCache());
scLinks.push_back(ScHCache());
}
return i->second.second;
}
// Turn queue name, and queue context into small int for
// annotation output
int
getQ(int sys, std::string q, uint64_t id)
{
int qi;
Id qid = Id(q, id);
qi = qCache[sys-1][qid];
if (qi == 0) {
qi = qCache[sys-1][qid] = ++numQs;
assert(qi < 65535);
qSize.push_back(0);
qBytes.push_back(0);
qData.push_back(AnnotateList());
numQ[sys-1]++;
qMap.push_back(std::make_pair(sys, qid));
}
return qi;
}
void swBegin(System *sys, int cpuid, std::string st, uint64_t frame,
bool expl = false, int flags = FL_NONE);
AnnDataPtr add(int t, int f, int c, int sm, int stq, int32_t data=0);
std::ostream *osbin;
bool _enabled;
/** Only allow one CPA object in a system. It doesn't make sense to have
* more that one per simulation because if a part of the system was
* important it would have annotations and queues, and with more than one
* object none of the sanity checking for queues will work. */
static bool exists;
static CPA *_cpa;
std::map<std::string, SymbolTable*> userApp;
public:
static CPA *cpa() { return _cpa; }
void swSmBegin(ThreadContext *tc);
void swSmEnd(ThreadContext *tc);
void swExplictBegin(ThreadContext *tc);
void swAutoBegin(ThreadContext *tc, Addr next_pc);
void swEnd(ThreadContext *tc);
void swQ(ThreadContext *tc);
void swDq(ThreadContext *tc);
void swPq(ThreadContext *tc);
void swRq(ThreadContext *tc);
void swWf(ThreadContext *tc);
void swWe(ThreadContext *tc);
void swSq(ThreadContext *tc);
void swAq(ThreadContext *tc);
void swLink(ThreadContext *tc);
void swIdentify(ThreadContext *tc);
uint64_t swGetId(ThreadContext *tc);
void swSyscallLink(ThreadContext *tc);
inline void hwBegin(flags f, System *sys, uint64_t frame, std::string sm,
std::string st)
{
if (!enabled())
return;
int sysi = getSys(sys);
int smi = getSm(sysi, sm, frame);
add(OP_BEGIN, FL_HW | f, 0, smi, getSt(sm, st));
if (f & FL_BAD)
warn("BAD state encountered: at cycle %d: %s\n", curTick(), st);
}
inline void hwQ(flags f, System *sys, uint64_t frame, std::string sm,
std::string q, uint64_t qid, System *q_sys = NULL, int32_t count = 1)
{
if (!enabled())
return;
int sysi = getSys(sys);
int qi = getQ(q_sys ? getSys(q_sys) : sysi, q, qid);
DPRINTFS(AnnotateQ, sys,
"hwQ: %s[%#x] cur size %d %d bytes: %d adding: %d\n",
q, qid, qSize[qi-1], qData[qi-1].size(), qBytes[qi-1], count);
doQ(sys, FL_HW | f, 0, getSm(sysi, sm, frame), q, qi, count);
}
inline void hwDq(flags f, System *sys, uint64_t frame, std::string sm,
std::string q, uint64_t qid, System *q_sys = NULL, int32_t count = 1)
{
if (!enabled())
return;
int sysi = getSys(sys);
int qi = getQ(q_sys ? getSys(q_sys) : sysi, q, qid);
DPRINTFS(AnnotateQ, sys,
"hwDQ: %s[%#x] cur size %d %d bytes: %d removing: %d\n",
q, qid, qSize[qi-1], qData[qi-1].size(), qBytes[qi-1], count);
doDq(sys, FL_HW | f, 0, getSm(sysi,sm, frame), q, qi, count);
}
inline void hwPq(flags f, System *sys, uint64_t frame, std::string sm,
std::string q, uint64_t qid, System *q_sys = NULL, int32_t count = 1)
{
if (!enabled())
return;
int sysi = getSys(sys);
int qi = getQ(q_sys ? getSys(q_sys) : sysi, q, qid);
DPRINTFS(AnnotateQ, sys,
"hwPQ: %s[%#x] cur size %d %d bytes: %d peeking: %d\n",
q, qid, qSize[qi-1], qData[qi-1].size(), qBytes[qi-1], count);
add(OP_PEEK, FL_HW | f, 0, getSm(sysi, sm, frame), qi, count);
}
inline void hwRq(flags f, System *sys, uint64_t frame, std::string sm,
std::string q, uint64_t qid, System *q_sys = NULL, int32_t count = 1)
{
if (!enabled())
return;
int sysi = getSys(sys);
int qi = getQ(q_sys ? getSys(q_sys) : sysi, q, qid);
DPRINTFS(AnnotateQ, sys,
"hwRQ: %s[%#x] cur size %d %d bytes: %d reserving: %d\n",
q, qid, qSize[qi-1], qData[qi-1].size(), qBytes[qi-1], count);
add(OP_RESERVE, FL_HW | f, 0, getSm(sysi, sm, frame), qi, count);
}
inline void hwWf(flags f, System *sys, uint64_t frame, std::string sm,
std::string q, uint64_t qid, System *q_sys = NULL, int32_t count = 1)
{
if (!enabled())
return;
int sysi = getSys(sys);
int qi = getQ(q_sys ? getSys(q_sys) : sysi, q, qid);
add(OP_WAIT_FULL, FL_HW | f, 0, getSm(sysi, sm, frame), qi, count);
}
inline void hwWe(flags f, System *sys, uint64_t frame, std::string sm,
std::string q, uint64_t qid, System *q_sys = NULL, int32_t count = 1)
{
if (!enabled())
return;
int sysi = getSys(sys);
int qi = getQ(q_sys ? getSys(q_sys) : sysi, q, qid);
add(OP_WAIT_EMPTY, FL_HW | f, 0, getSm(sysi, sm, frame), qi, count);
}
public:
CPA(Params *p);
void startup();
uint64_t getFrame(ThreadContext *tc);
static bool available() { return true; }
bool
enabled()
{
if (!this)
return false;
return _enabled;
}
void dump(bool all);
void dumpKey();
void serialize(CheckpointOut &cp) const M5_ATTR_OVERRIDE;
void unserialize(CheckpointIn &cp) M5_ATTR_OVERRIDE;
};
#endif // !CP_ANNOTATE
#endif //__BASE__CP_ANNOTATE_HH__