gem5/src/arch/arm/pmu.cc
Andreas Sandberg 76cd4393c0 sim: Refactor the serialization base class
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

  * Add a set of APIs to serialize into a subsection of the current
    object. Previously, objects that needed this functionality would
    use ad-hoc solutions using nameOut() and section name
    generation. In the new world, an object that implements the
    interface has the methods serializeSection() and
    unserializeSection() that serialize into a named /subsection/ of
    the current object. Calling serialize() serializes an object into
    the current section.

  * Move the name() method from Serializable to SimObject as it is no
    longer needed for serialization. The fully qualified section name
    is generated by the main serialization code on the fly as objects
    serialize sub-objects.

  * Add a scoped ScopedCheckpointSection helper class. Some objects
    need to serialize data structures, that are not deriving from
    Serializable, into subsections. Previously, this was done using
    nameOut() and manual section name generation. To simplify this,
    this changeset introduces a ScopedCheckpointSection() helper
    class. When this class is instantiated, it adds a new /subsection/
    and subsequent serialization calls during the lifetime of this
    helper class happen inside this section (or a subsection in case
    of nested sections).

  * The serialize() call is now const which prevents accidental state
    manipulation during serialization. Objects that rely on modifying
    state can use the serializeOld() call instead. The default
    implementation simply calls serialize(). Note: The old-style calls
    need to be explicitly called using the
    serializeOld()/serializeSectionOld() style APIs. These are used by
    default when serializing SimObjects.

  * Both the input and output checkpoints now use their own named
    types. This hides underlying checkpoint implementation from
    objects that need checkpointing and makes it easier to change the
    underlying checkpoint storage code.
2015-07-07 09:51:03 +01:00

592 lines
16 KiB
C++

/*
* Copyright (c) 2011-2014 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Dam Sunwoo
* Matt Horsnell
* Andreas Sandberg
*/
#include "arch/arm/pmu.hh"
#include "arch/arm/isa.hh"
#include "arch/arm/utility.hh"
#include "base/trace.hh"
#include "cpu/base.hh"
#include "debug/Checkpoint.hh"
#include "debug/PMUVerbose.hh"
#include "dev/arm/base_gic.hh"
#include "dev/arm/realview.hh"
#include "params/ArmPMU.hh"
namespace ArmISA {
const MiscReg PMU::reg_pmcr_wr_mask = 0x39;
PMU::PMU(const ArmPMUParams *p)
: SimObject(p), BaseISADevice(),
reg_pmcnten(0), reg_pmcr(0),
reg_pmselr(0), reg_pminten(0), reg_pmovsr(0),
reg_pmceid(0),
clock_remainder(0),
counters(p->eventCounters),
reg_pmcr_conf(0),
pmuInterrupt(p->pmuInterrupt),
platform(p->platform)
{
DPRINTF(PMUVerbose, "Initializing the PMU.\n");
if (p->eventCounters > 31) {
fatal("The PMU can only accept 31 counters, %d counters requested.\n",
p->eventCounters);
}
/* Setup the performance counter ID registers */
reg_pmcr_conf.imp = 0x41; // ARM Ltd.
reg_pmcr_conf.idcode = 0x00;
reg_pmcr_conf.n = p->eventCounters;
// Setup the hard-coded cycle counter, which is equivalent to
// architected counter event type 0x11.
cycleCounter.eventId = 0x11;
}
PMU::~PMU()
{
}
void
PMU::addEventProbe(unsigned int id, SimObject *obj, const char *probe_name)
{
DPRINTF(PMUVerbose, "PMU: Adding event type '0x%x' as probe %s:%s\n",
id, obj->name(), probe_name);
pmuEventTypes.insert(std::make_pair(id, EventType(obj, probe_name)));
// Flag the event as available in the PMCEID register if it is an
// architected event.
if (id < 0x40)
reg_pmceid |= (ULL(1) << id);
}
void
PMU::drainResume()
{
// Re-attach enabled counters after a resume in case they changed.
updateAllCounters();
}
void
PMU::setMiscReg(int misc_reg, MiscReg val)
{
DPRINTF(PMUVerbose, "setMiscReg(%s, 0x%x)\n",
miscRegName[unflattenMiscReg(misc_reg)], val);
switch (unflattenMiscReg(misc_reg)) {
case MISCREG_PMCR_EL0:
case MISCREG_PMCR:
setControlReg(val);
return;
case MISCREG_PMCNTENSET_EL0:
case MISCREG_PMCNTENSET:
reg_pmcnten |= val;
updateAllCounters();
return;
case MISCREG_PMCNTENCLR_EL0:
case MISCREG_PMCNTENCLR:
reg_pmcnten &= ~val;
updateAllCounters();
return;
case MISCREG_PMOVSCLR_EL0:
case MISCREG_PMOVSR:
reg_pmovsr &= ~val;
return;
case MISCREG_PMSWINC_EL0:
case MISCREG_PMSWINC:
for (int i = 0; i < counters.size(); ++i) {
CounterState &ctr(getCounter(i));
if (ctr.enabled && (val & (1 << i)))
++ctr.value;
}
break;
case MISCREG_PMCCNTR_EL0:
case MISCREG_PMCCNTR:
cycleCounter.value = val;
return;
case MISCREG_PMSELR_EL0:
case MISCREG_PMSELR:
reg_pmselr = val;
return;
case MISCREG_PMCEID0_EL0:
case MISCREG_PMCEID0:
case MISCREG_PMCEID1_EL0:
case MISCREG_PMCEID1:
// Ignore writes
return;
case MISCREG_PMEVTYPER0_EL0...MISCREG_PMEVTYPER5_EL0:
setCounterTypeRegister(misc_reg - MISCREG_PMEVCNTR0_EL0, val);
return;
case MISCREG_PMCCFILTR:
case MISCREG_PMCCFILTR_EL0:
DPRINTF(PMUVerbose, "Setting PMCCFILTR: 0x%x\n", val);
setCounterTypeRegister(PMCCNTR, val);
return;
case MISCREG_PMXEVTYPER_PMCCFILTR:
case MISCREG_PMXEVTYPER_EL0:
case MISCREG_PMXEVTYPER:
DPRINTF(PMUVerbose, "Setting counter type: "
"[PMSELR: 0x%x, PMSELER.sel: 0x%x, EVTYPER: 0x%x]\n",
reg_pmselr, reg_pmselr.sel, val);
setCounterTypeRegister(reg_pmselr.sel, val);
return;
case MISCREG_PMEVCNTR0_EL0...MISCREG_PMEVCNTR5_EL0:
setCounterValue(misc_reg - MISCREG_PMEVCNTR0_EL0, val);
return;
case MISCREG_PMXEVCNTR_EL0:
case MISCREG_PMXEVCNTR:
setCounterValue(reg_pmselr.sel, val);
return;
case MISCREG_PMUSERENR_EL0:
case MISCREG_PMUSERENR:
// TODO
break;
case MISCREG_PMINTENSET_EL1:
case MISCREG_PMINTENSET:
reg_pminten |= val;
return;
case MISCREG_PMINTENCLR_EL1:
case MISCREG_PMINTENCLR:
reg_pminten &= ~val;
return;
case MISCREG_PMOVSSET_EL0:
case MISCREG_PMOVSSET:
reg_pmovsr |= val;
return;
default:
panic("Unexpected PMU register: %i\n", miscRegName[misc_reg]);
}
warn("Not doing anything for write to miscreg %s\n",
miscRegName[misc_reg]);
}
MiscReg
PMU::readMiscReg(int misc_reg)
{
MiscReg val(readMiscRegInt(misc_reg));
DPRINTF(PMUVerbose, "readMiscReg(%s): 0x%x\n",
miscRegName[unflattenMiscReg(misc_reg)], val);
return val;
}
MiscReg
PMU::readMiscRegInt(int misc_reg)
{
misc_reg = unflattenMiscReg(misc_reg);
switch (misc_reg) {
case MISCREG_PMCR_EL0:
case MISCREG_PMCR:
return reg_pmcr_conf | (reg_pmcr & reg_pmcr_wr_mask);
case MISCREG_PMCNTENSET_EL0:
case MISCREG_PMCNTENCLR_EL0:
case MISCREG_PMCNTENSET:
case MISCREG_PMCNTENCLR:
return reg_pmcnten;
case MISCREG_PMOVSCLR_EL0:
case MISCREG_PMOVSSET_EL0:
case MISCREG_PMOVSR: // Overflow Status Register
case MISCREG_PMOVSSET:
return reg_pmovsr;
case MISCREG_PMSWINC_EL0:
case MISCREG_PMSWINC: // Software Increment Register (RAZ)
return 0;
case MISCREG_PMSELR:
return reg_pmselr;
case MISCREG_PMCEID0_EL0:
case MISCREG_PMCEID0: // Common Event ID register
return reg_pmceid & 0xFFFFFFFF;
case MISCREG_PMCEID1_EL0:
case MISCREG_PMCEID1: // Common Event ID register
return (reg_pmceid >> 32) & 0xFFFFFFFF;
case MISCREG_PMCCNTR_EL0:
return cycleCounter.value;
case MISCREG_PMCCNTR:
return cycleCounter.value & 0xFFFFFFFF;
case MISCREG_PMEVTYPER0_EL0...MISCREG_PMEVTYPER5_EL0:
return getCounterTypeRegister(misc_reg - MISCREG_PMEVTYPER0_EL0);
case MISCREG_PMCCFILTR:
case MISCREG_PMCCFILTR_EL0:
return getCounterTypeRegister(PMCCNTR);
case MISCREG_PMXEVTYPER_PMCCFILTR:
case MISCREG_PMXEVTYPER_EL0:
case MISCREG_PMXEVTYPER:
return getCounterTypeRegister(reg_pmselr.sel);
case MISCREG_PMEVCNTR0_EL0...MISCREG_PMEVCNTR5_EL0:
return getCounterValue(misc_reg - MISCREG_PMEVCNTR0_EL0) & 0xFFFFFFFF;
case MISCREG_PMXEVCNTR_EL0:
case MISCREG_PMXEVCNTR:
return getCounterValue(reg_pmselr.sel) & 0xFFFFFFFF;
case MISCREG_PMUSERENR_EL0:
case MISCREG_PMUSERENR:
// TODO
return 0;
case MISCREG_PMINTENSET_EL1:
case MISCREG_PMINTENCLR_EL1:
case MISCREG_PMINTENSET:
case MISCREG_PMINTENCLR:
return reg_pminten;
default:
panic("Unexpected PMU register: %i\n", miscRegName[misc_reg]);
}
warn("Not doing anything for read from miscreg %s\n",
miscRegName[misc_reg]);
return 0;
}
void
PMU::setControlReg(PMCR_t val)
{
DPRINTF(PMUVerbose, "Set Control Reg 0x%08x.\n", val);
if (val.p) {
DPRINTF(PMUVerbose, "PMU reset all events to zero.\n");
resetEventCounts();
}
if (val.c) {
DPRINTF(PMUVerbose, "PMU reset cycle counter to zero.\n");
cycleCounter.value = 0;
}
// Reset the clock remainder if divide by 64-mode is toggled.
if (reg_pmcr.d != val.d)
clock_remainder = 0;
reg_pmcr = val & reg_pmcr_wr_mask;
updateAllCounters();
}
void
PMU::updateAllCounters()
{
const bool global_enable(reg_pmcr.e);
for (int i = 0; i < counters.size(); ++i) {
CounterState &ctr(counters[i]);
const bool enable(global_enable && (reg_pmcnten & (1 << i)));
if (ctr.enabled != enable) {
ctr.enabled = enable;
updateCounter(i, ctr);
}
}
const bool ccntr_enable(global_enable && (reg_pmcnten & (1 << PMCCNTR)));
if (cycleCounter.enabled != ccntr_enable) {
cycleCounter.enabled = ccntr_enable;
updateCounter(PMCCNTR, cycleCounter);
}
}
bool
PMU::isFiltered(const CounterState &ctr) const
{
assert(isa);
const PMEVTYPER_t filter(ctr.filter);
const SCR scr(isa->readMiscRegNoEffect(MISCREG_SCR));
const CPSR cpsr(isa->readMiscRegNoEffect(MISCREG_CPSR));
const ExceptionLevel el(opModeToEL((OperatingMode)(uint8_t)cpsr.mode));
const bool secure(inSecureState(scr, cpsr));
switch (el) {
case EL0:
return secure ? filter.u : (filter.u != filter.nsu);
case EL1:
return secure ? filter.p : (filter.p != filter.nsk);
case EL2:
return !filter.nsh;
case EL3:
return filter.p != filter.m;
default:
panic("Unexpected execution level in PMU::isFiltered.\n");
}
}
void
PMU::handleEvent(CounterId id, uint64_t delta)
{
CounterState &ctr(getCounter(id));
const bool overflowed(reg_pmovsr & (1 << id));
if (isFiltered(ctr))
return;
// Handle the "count every 64 cycles" mode
if (id == PMCCNTR && reg_pmcr.d) {
clock_remainder += delta;
delta = (clock_remainder >> 6);
clock_remainder &= 63;
}
// Add delta and handle (new) overflows
if (ctr.add(delta) && !overflowed) {
DPRINTF(PMUVerbose, "PMU counter '%i' overflowed.\n", id);
reg_pmovsr |= (1 << id);
// Deliver a PMU interrupt if interrupt delivery is enabled
// for this counter.
if (reg_pminten & (1 << id))
raiseInterrupt();
}
}
void
PMU::updateCounter(CounterId id, CounterState &ctr)
{
if (!ctr.enabled) {
if (!ctr.listeners.empty()) {
DPRINTF(PMUVerbose, "updateCounter(%i): Disabling counter\n", id);
ctr.listeners.clear();
}
} else {
DPRINTF(PMUVerbose, "updateCounter(%i): Enable event id 0x%x\n",
id, ctr.eventId);
// Attach all probes belonging to this event
auto range(pmuEventTypes.equal_range(ctr.eventId));
for (auto it = range.first; it != range.second; ++it) {
const EventType &et(it->second);
DPRINTF(PMUVerbose, "\tProbe: %s:%s\n", et.obj->name(), et.name);
ctr.listeners.emplace_back(et.create(*this, id));
}
/* The SW_INCR event type is a special case which doesn't need
* any probes since it is controlled by software and the PMU
* itself.
*/
if (ctr.listeners.empty() && ctr.eventId != ARCH_EVENT_SW_INCR) {
warn("Can't enable PMU counter of type '0x%x': "
"No such event type.\n", ctr.eventId);
}
}
}
void
PMU::resetEventCounts()
{
for (CounterState &ctr : counters)
ctr.value = 0;
}
void
PMU::setCounterValue(CounterId id, uint64_t val)
{
if (!isValidCounter(id)) {
warn_once("Can't change counter value: Counter %i does not exist.\n",
id);
return;
}
CounterState &ctr(getCounter(id));
ctr.value = val;
}
PMU::PMEVTYPER_t
PMU::getCounterTypeRegister(CounterId id) const
{
if (!isValidCounter(id))
return 0;
const CounterState &cs(getCounter(id));
PMEVTYPER_t type(cs.filter);
type.evtCount = cs.eventId;
return type;
}
void
PMU::setCounterTypeRegister(CounterId id, PMEVTYPER_t val)
{
DPRINTF(PMUVerbose, "Set Event [%d] = 0x%08x\n", id, val);
if (!isValidCounter(id)) {
warn_once("Can't change counter type: Counter %i does not exist.\n",
id);
return;
}
CounterState &ctr(getCounter(id));
const EventTypeId old_event_id(ctr.eventId);
ctr.filter = val;
// If PMCCNTR Register, do not change event type. PMCCNTR can
// count processor cycles only. If we change the event type, we
// need to update the probes the counter is using.
if (id != PMCCNTR && old_event_id != val.evtCount) {
ctr.eventId = val.evtCount;
updateCounter(reg_pmselr.sel, ctr);
}
}
void
PMU::raiseInterrupt()
{
RealView *rv(dynamic_cast<RealView *>(platform));
if (!rv || !rv->gic) {
warn_once("ARM PMU: GIC missing, can't raise interrupt.\n");
return;
}
DPRINTF(PMUVerbose, "Delivering PMU interrupt.\n");
rv->gic->sendInt(pmuInterrupt);
}
void
PMU::serialize(CheckpointOut &cp) const
{
DPRINTF(Checkpoint, "Serializing Arm PMU\n");
SERIALIZE_SCALAR(reg_pmcr);
SERIALIZE_SCALAR(reg_pmcnten);
SERIALIZE_SCALAR(reg_pmselr);
SERIALIZE_SCALAR(reg_pminten);
SERIALIZE_SCALAR(reg_pmovsr);
SERIALIZE_SCALAR(reg_pmceid);
SERIALIZE_SCALAR(clock_remainder);
for (size_t i = 0; i < counters.size(); ++i)
counters[i].serializeSection(cp, csprintf("counters.%i", i));
cycleCounter.serializeSection(cp, "cycleCounter");
}
void
PMU::unserialize(CheckpointIn &cp)
{
DPRINTF(Checkpoint, "Unserializing Arm PMU\n");
UNSERIALIZE_SCALAR(reg_pmcr);
UNSERIALIZE_SCALAR(reg_pmcnten);
UNSERIALIZE_SCALAR(reg_pmselr);
UNSERIALIZE_SCALAR(reg_pminten);
UNSERIALIZE_SCALAR(reg_pmovsr);
UNSERIALIZE_SCALAR(reg_pmceid);
UNSERIALIZE_SCALAR(clock_remainder);
for (size_t i = 0; i < counters.size(); ++i)
counters[i].unserializeSection(cp, csprintf("counters.%i", i));
cycleCounter.unserializeSection(cp, "cycleCounter");
}
void
PMU::CounterState::serialize(CheckpointOut &cp) const
{
SERIALIZE_SCALAR(eventId);
SERIALIZE_SCALAR(value);
SERIALIZE_SCALAR(enabled);
SERIALIZE_SCALAR(overflow64);
}
void
PMU::CounterState::unserialize(CheckpointIn &cp)
{
UNSERIALIZE_SCALAR(eventId);
UNSERIALIZE_SCALAR(value);
UNSERIALIZE_SCALAR(enabled);
UNSERIALIZE_SCALAR(overflow64);
}
bool
PMU::CounterState::add(uint64_t delta)
{
const uint64_t msb(1ULL << (overflow64 ? 63 : 31));
const uint64_t old_value(value);
assert(delta > 0);
value += delta;
// Overflow if the msb goes from 1 to 0
return (old_value & msb) && !(value & msb);
}
} // namespace ArmISA
ArmISA::PMU *
ArmPMUParams::create()
{
return new ArmISA::PMU(this);
}