gem5/src/python/m5/SimObject.py
Nathan Binkert 961f8382f6 Add a function to get a SimObject's memory mode and rework
the set memory mode code to only go through the change if
it is necessary

--HG--
extra : convert_revision : 28288227bb56b0a04d756776eaf0a4ff9e1f8c20
2007-06-10 13:52:21 -07:00

802 lines
30 KiB
Python

# Copyright (c) 2004-2006 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Steve Reinhardt
# Nathan Binkert
import sys, types
from util import *
from multidict import multidict
# These utility functions have to come first because they're
# referenced in params.py... otherwise they won't be defined when we
# import params below, and the recursive import of this file from
# params.py will not find these names.
def isSimObject(value):
return isinstance(value, SimObject)
def isSimObjectClass(value):
return issubclass(value, SimObject)
def isSimObjectSequence(value):
if not isinstance(value, (list, tuple)) or len(value) == 0:
return False
for val in value:
if not isNullPointer(val) and not isSimObject(val):
return False
return True
def isSimObjectOrSequence(value):
return isSimObject(value) or isSimObjectSequence(value)
# Have to import params up top since Param is referenced on initial
# load (when SimObject class references Param to create a class
# variable, the 'name' param)...
from params import *
# There are a few things we need that aren't in params.__all__ since
# normal users don't need them
from params import ParamDesc, isNullPointer, SimObjVector
noDot = False
try:
import pydot
except:
noDot = True
#####################################################################
#
# M5 Python Configuration Utility
#
# The basic idea is to write simple Python programs that build Python
# objects corresponding to M5 SimObjects for the desired simulation
# configuration. For now, the Python emits a .ini file that can be
# parsed by M5. In the future, some tighter integration between M5
# and the Python interpreter may allow bypassing the .ini file.
#
# Each SimObject class in M5 is represented by a Python class with the
# same name. The Python inheritance tree mirrors the M5 C++ tree
# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
# SimObjects inherit from a single SimObject base class). To specify
# an instance of an M5 SimObject in a configuration, the user simply
# instantiates the corresponding Python object. The parameters for
# that SimObject are given by assigning to attributes of the Python
# object, either using keyword assignment in the constructor or in
# separate assignment statements. For example:
#
# cache = BaseCache(size='64KB')
# cache.hit_latency = 3
# cache.assoc = 8
#
# The magic lies in the mapping of the Python attributes for SimObject
# classes to the actual SimObject parameter specifications. This
# allows parameter validity checking in the Python code. Continuing
# the example above, the statements "cache.blurfl=3" or
# "cache.assoc='hello'" would both result in runtime errors in Python,
# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
# parameter requires an integer, respectively. This magic is done
# primarily by overriding the special __setattr__ method that controls
# assignment to object attributes.
#
# Once a set of Python objects have been instantiated in a hierarchy,
# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
# will generate a .ini file.
#
#####################################################################
# dict to look up SimObjects based on path
instanceDict = {}
# The metaclass for SimObject. This class controls how new classes
# that derive from SimObject are instantiated, and provides inherited
# class behavior (just like a class controls how instances of that
# class are instantiated, and provides inherited instance behavior).
class MetaSimObject(type):
# Attributes that can be set only at initialization time
init_keywords = { 'abstract' : types.BooleanType,
'type' : types.StringType }
# Attributes that can be set any time
keywords = { 'check' : types.FunctionType,
'cxx_type' : types.StringType,
'cxx_predecls' : types.ListType,
'swig_predecls' : types.ListType }
# __new__ is called before __init__, and is where the statements
# in the body of the class definition get loaded into the class's
# __dict__. We intercept this to filter out parameter & port assignments
# and only allow "private" attributes to be passed to the base
# __new__ (starting with underscore).
def __new__(mcls, name, bases, dict):
# Copy "private" attributes, functions, and classes to the
# official dict. Everything else goes in _init_dict to be
# filtered in __init__.
cls_dict = {}
value_dict = {}
for key,val in dict.items():
if key.startswith('_') or isinstance(val, (types.FunctionType,
types.TypeType)):
cls_dict[key] = val
else:
# must be a param/port setting
value_dict[key] = val
cls_dict['_value_dict'] = value_dict
return super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
# subclass initialization
def __init__(cls, name, bases, dict):
# calls type.__init__()... I think that's a no-op, but leave
# it here just in case it's not.
super(MetaSimObject, cls).__init__(name, bases, dict)
# initialize required attributes
# class-only attributes
cls._params = multidict() # param descriptions
cls._ports = multidict() # port descriptions
# class or instance attributes
cls._values = multidict() # param values
cls._port_refs = multidict() # port ref objects
cls._instantiated = False # really instantiated, cloned, or subclassed
# We don't support multiple inheritance. If you want to, you
# must fix multidict to deal with it properly.
if len(bases) > 1:
raise TypeError, "SimObjects do not support multiple inheritance"
base = bases[0]
# Set up general inheritance via multidicts. A subclass will
# inherit all its settings from the base class. The only time
# the following is not true is when we define the SimObject
# class itself (in which case the multidicts have no parent).
if isinstance(base, MetaSimObject):
cls._params.parent = base._params
cls._ports.parent = base._ports
cls._values.parent = base._values
cls._port_refs.parent = base._port_refs
# mark base as having been subclassed
base._instantiated = True
# Now process the _value_dict items. They could be defining
# new (or overriding existing) parameters or ports, setting
# class keywords (e.g., 'abstract'), or setting parameter
# values or port bindings. The first 3 can only be set when
# the class is defined, so we handle them here. The others
# can be set later too, so just emulate that by calling
# setattr().
for key,val in cls._value_dict.items():
# param descriptions
if isinstance(val, ParamDesc):
cls._new_param(key, val)
# port objects
elif isinstance(val, Port):
cls._new_port(key, val)
# init-time-only keywords
elif cls.init_keywords.has_key(key):
cls._set_keyword(key, val, cls.init_keywords[key])
# default: use normal path (ends up in __setattr__)
else:
setattr(cls, key, val)
cls.cxx_type = cls.type + '*'
# A forward class declaration is sufficient since we are just
# declaring a pointer.
cls.cxx_predecls = ['class %s;' % cls.type]
cls.swig_predecls = cls.cxx_predecls
def _set_keyword(cls, keyword, val, kwtype):
if not isinstance(val, kwtype):
raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
(keyword, type(val), kwtype)
if isinstance(val, types.FunctionType):
val = classmethod(val)
type.__setattr__(cls, keyword, val)
def _new_param(cls, name, pdesc):
# each param desc should be uniquely assigned to one variable
assert(not hasattr(pdesc, 'name'))
pdesc.name = name
cls._params[name] = pdesc
if hasattr(pdesc, 'default'):
cls._set_param(name, pdesc.default, pdesc)
def _set_param(cls, name, value, param):
assert(param.name == name)
try:
cls._values[name] = param.convert(value)
except Exception, e:
msg = "%s\nError setting param %s.%s to %s\n" % \
(e, cls.__name__, name, value)
e.args = (msg, )
raise
def _new_port(cls, name, port):
# each port should be uniquely assigned to one variable
assert(not hasattr(port, 'name'))
port.name = name
cls._ports[name] = port
if hasattr(port, 'default'):
cls._cls_get_port_ref(name).connect(port.default)
# same as _get_port_ref, effectively, but for classes
def _cls_get_port_ref(cls, attr):
# Return reference that can be assigned to another port
# via __setattr__. There is only ever one reference
# object per port, but we create them lazily here.
ref = cls._port_refs.get(attr)
if not ref:
ref = cls._ports[attr].makeRef(cls)
cls._port_refs[attr] = ref
return ref
# Set attribute (called on foo.attr = value when foo is an
# instance of class cls).
def __setattr__(cls, attr, value):
# normal processing for private attributes
if attr.startswith('_'):
type.__setattr__(cls, attr, value)
return
if cls.keywords.has_key(attr):
cls._set_keyword(attr, value, cls.keywords[attr])
return
if cls._ports.has_key(attr):
cls._cls_get_port_ref(attr).connect(value)
return
if isSimObjectOrSequence(value) and cls._instantiated:
raise RuntimeError, \
"cannot set SimObject parameter '%s' after\n" \
" class %s has been instantiated or subclassed" \
% (attr, cls.__name__)
# check for param
param = cls._params.get(attr)
if param:
cls._set_param(attr, value, param)
return
if isSimObjectOrSequence(value):
# If RHS is a SimObject, it's an implicit child assignment.
# Classes don't have children, so we just put this object
# in _values; later, each instance will do a 'setattr(self,
# attr, _values[attr])' in SimObject.__init__ which will
# add this object as a child.
cls._values[attr] = value
return
# no valid assignment... raise exception
raise AttributeError, \
"Class %s has no parameter \'%s\'" % (cls.__name__, attr)
def __getattr__(cls, attr):
if cls._values.has_key(attr):
return cls._values[attr]
raise AttributeError, \
"object '%s' has no attribute '%s'" % (cls.__name__, attr)
def __str__(cls):
return cls.__name__
def cxx_decl(cls):
code = "#ifndef __PARAMS__%s\n#define __PARAMS__%s\n\n" % (cls, cls)
if str(cls) != 'SimObject':
base = cls.__bases__[0].type
else:
base = None
# The 'dict' attribute restricts us to the params declared in
# the object itself, not including inherited params (which
# will also be inherited from the base class's param struct
# here).
params = cls._params.dict.values()
try:
ptypes = [p.ptype for p in params]
except:
print cls, p, p.ptype_str
print params
raise
# get a list of lists of predeclaration lines
predecls = [p.cxx_predecls() for p in params]
# flatten
predecls = reduce(lambda x,y:x+y, predecls, [])
# remove redundant lines
predecls2 = []
for pd in predecls:
if pd not in predecls2:
predecls2.append(pd)
predecls2.sort()
code += "\n".join(predecls2)
code += "\n\n";
if base:
code += '#include "params/%s.hh"\n\n' % base
# Generate declarations for locally defined enumerations.
enum_ptypes = [t for t in ptypes if issubclass(t, Enum)]
if enum_ptypes:
code += "\n".join([t.cxx_decl() for t in enum_ptypes])
code += "\n\n"
# now generate the actual param struct
code += "struct %sParams" % cls
if base:
code += " : public %sParams" % base
code += " {\n"
decls = [p.cxx_decl() for p in params]
decls.sort()
code += "".join([" %s\n" % d for d in decls])
code += "};\n"
# close #ifndef __PARAMS__* guard
code += "\n#endif\n"
return code
def swig_decl(cls):
code = '%%module %sParams\n' % cls
if str(cls) != 'SimObject':
base = cls.__bases__[0].type
else:
base = None
# The 'dict' attribute restricts us to the params declared in
# the object itself, not including inherited params (which
# will also be inherited from the base class's param struct
# here).
params = cls._params.dict.values()
ptypes = [p.ptype for p in params]
# get a list of lists of predeclaration lines
predecls = [p.swig_predecls() for p in params]
# flatten
predecls = reduce(lambda x,y:x+y, predecls, [])
# remove redundant lines
predecls2 = []
for pd in predecls:
if pd not in predecls2:
predecls2.append(pd)
predecls2.sort()
code += "\n".join(predecls2)
code += "\n\n";
if base:
code += '%%import "python/m5/swig/%sParams.i"\n\n' % base
code += '%{\n'
code += '#include "params/%s.hh"\n' % cls
code += '%}\n\n'
code += '%%include "params/%s.hh"\n\n' % cls
return code
# The SimObject class is the root of the special hierarchy. Most of
# the code in this class deals with the configuration hierarchy itself
# (parent/child node relationships).
class SimObject(object):
# Specify metaclass. Any class inheriting from SimObject will
# get this metaclass.
__metaclass__ = MetaSimObject
type = 'SimObject'
name = Param.String("Object name")
# Initialize new instance. For objects with SimObject-valued
# children, we need to recursively clone the classes represented
# by those param values as well in a consistent "deep copy"-style
# fashion. That is, we want to make sure that each instance is
# cloned only once, and that if there are multiple references to
# the same original object, we end up with the corresponding
# cloned references all pointing to the same cloned instance.
def __init__(self, **kwargs):
ancestor = kwargs.get('_ancestor')
memo_dict = kwargs.get('_memo')
if memo_dict is None:
# prepare to memoize any recursively instantiated objects
memo_dict = {}
elif ancestor:
# memoize me now to avoid problems with recursive calls
memo_dict[ancestor] = self
if not ancestor:
ancestor = self.__class__
ancestor._instantiated = True
# initialize required attributes
self._parent = None
self._children = {}
self._ccObject = None # pointer to C++ object
self._instantiated = False # really "cloned"
# Inherit parameter values from class using multidict so
# individual value settings can be overridden.
self._values = multidict(ancestor._values)
# clone SimObject-valued parameters
for key,val in ancestor._values.iteritems():
if isSimObject(val):
setattr(self, key, val(_memo=memo_dict))
elif isSimObjectSequence(val) and len(val):
setattr(self, key, [ v(_memo=memo_dict) for v in val ])
# clone port references. no need to use a multidict here
# since we will be creating new references for all ports.
self._port_refs = {}
for key,val in ancestor._port_refs.iteritems():
self._port_refs[key] = val.clone(self, memo_dict)
# apply attribute assignments from keyword args, if any
for key,val in kwargs.iteritems():
setattr(self, key, val)
# "Clone" the current instance by creating another instance of
# this instance's class, but that inherits its parameter values
# and port mappings from the current instance. If we're in a
# "deep copy" recursive clone, check the _memo dict to see if
# we've already cloned this instance.
def __call__(self, **kwargs):
memo_dict = kwargs.get('_memo')
if memo_dict is None:
# no memo_dict: must be top-level clone operation.
# this is only allowed at the root of a hierarchy
if self._parent:
raise RuntimeError, "attempt to clone object %s " \
"not at the root of a tree (parent = %s)" \
% (self, self._parent)
# create a new dict and use that.
memo_dict = {}
kwargs['_memo'] = memo_dict
elif memo_dict.has_key(self):
# clone already done & memoized
return memo_dict[self]
return self.__class__(_ancestor = self, **kwargs)
def _get_port_ref(self, attr):
# Return reference that can be assigned to another port
# via __setattr__. There is only ever one reference
# object per port, but we create them lazily here.
ref = self._port_refs.get(attr)
if not ref:
ref = self._ports[attr].makeRef(self)
self._port_refs[attr] = ref
return ref
def __getattr__(self, attr):
if self._ports.has_key(attr):
return self._get_port_ref(attr)
if self._values.has_key(attr):
return self._values[attr]
raise AttributeError, "object '%s' has no attribute '%s'" \
% (self.__class__.__name__, attr)
# Set attribute (called on foo.attr = value when foo is an
# instance of class cls).
def __setattr__(self, attr, value):
# normal processing for private attributes
if attr.startswith('_'):
object.__setattr__(self, attr, value)
return
if self._ports.has_key(attr):
# set up port connection
self._get_port_ref(attr).connect(value)
return
if isSimObjectOrSequence(value) and self._instantiated:
raise RuntimeError, \
"cannot set SimObject parameter '%s' after\n" \
" instance been cloned %s" % (attr, `self`)
# must be SimObject param
param = self._params.get(attr)
if param:
try:
value = param.convert(value)
except Exception, e:
msg = "%s\nError setting param %s.%s to %s\n" % \
(e, self.__class__.__name__, attr, value)
e.args = (msg, )
raise
self._set_child(attr, value)
return
if isSimObjectOrSequence(value):
self._set_child(attr, value)
return
# no valid assignment... raise exception
raise AttributeError, "Class %s has no parameter %s" \
% (self.__class__.__name__, attr)
# this hack allows tacking a '[0]' onto parameters that may or may
# not be vectors, and always getting the first element (e.g. cpus)
def __getitem__(self, key):
if key == 0:
return self
raise TypeError, "Non-zero index '%s' to SimObject" % key
# clear out children with given name, even if it's a vector
def clear_child(self, name):
if not self._children.has_key(name):
return
child = self._children[name]
if isinstance(child, SimObjVector):
for i in xrange(len(child)):
del self._children["s%d" % (name, i)]
del self._children[name]
def add_child(self, name, value):
self._children[name] = value
def _maybe_set_parent(self, parent, name):
if not self._parent:
self._parent = parent
self._name = name
parent.add_child(name, self)
def _set_child(self, attr, value):
# if RHS is a SimObject, it's an implicit child assignment
# clear out old child with this name, if any
self.clear_child(attr)
if isSimObject(value):
value._maybe_set_parent(self, attr)
elif isSimObjectSequence(value):
value = SimObjVector(value)
[v._maybe_set_parent(self, "%s%d" % (attr, i))
for i,v in enumerate(value)]
self._values[attr] = value
def path(self):
if not self._parent:
return 'root'
ppath = self._parent.path()
if ppath == 'root':
return self._name
return ppath + "." + self._name
def __str__(self):
return self.path()
def ini_str(self):
return self.path()
def find_any(self, ptype):
if isinstance(self, ptype):
return self, True
found_obj = None
for child in self._children.itervalues():
if isinstance(child, ptype):
if found_obj != None and child != found_obj:
raise AttributeError, \
'parent.any matched more than one: %s %s' % \
(found_obj.path, child.path)
found_obj = child
# search param space
for pname,pdesc in self._params.iteritems():
if issubclass(pdesc.ptype, ptype):
match_obj = self._values[pname]
if found_obj != None and found_obj != match_obj:
raise AttributeError, \
'parent.any matched more than one: %s' % obj.path
found_obj = match_obj
return found_obj, found_obj != None
def unproxy(self, base):
return self
def unproxy_all(self):
for param in self._params.iterkeys():
value = self._values.get(param)
if value != None and proxy.isproxy(value):
try:
value = value.unproxy(self)
except:
print "Error in unproxying param '%s' of %s" % \
(param, self.path())
raise
setattr(self, param, value)
# Unproxy ports in sorted order so that 'append' operations on
# vector ports are done in a deterministic fashion.
port_names = self._ports.keys()
port_names.sort()
for port_name in port_names:
port = self._port_refs.get(port_name)
if port != None:
port.unproxy(self)
# Unproxy children in sorted order for determinism also.
child_names = self._children.keys()
child_names.sort()
for child in child_names:
self._children[child].unproxy_all()
def print_ini(self):
print '[' + self.path() + ']' # .ini section header
instanceDict[self.path()] = self
if hasattr(self, 'type'):
print 'type=%s' % self.type
child_names = self._children.keys()
child_names.sort()
if len(child_names):
print 'children=%s' % ' '.join(child_names)
param_names = self._params.keys()
param_names.sort()
for param in param_names:
value = self._values.get(param)
if value != None:
print '%s=%s' % (param, self._values[param].ini_str())
port_names = self._ports.keys()
port_names.sort()
for port_name in port_names:
port = self._port_refs.get(port_name, None)
if port != None:
print '%s=%s' % (port_name, port.ini_str())
print # blank line between objects
for child in child_names:
self._children[child].print_ini()
# Call C++ to create C++ object corresponding to this object and
# (recursively) all its children
def createCCObject(self):
self.getCCObject() # force creation
for child in self._children.itervalues():
child.createCCObject()
# Get C++ object corresponding to this object, calling C++ if
# necessary to construct it. Does *not* recursively create
# children.
def getCCObject(self):
if not self._ccObject:
self._ccObject = -1 # flag to catch cycles in recursion
self._ccObject = internal.sim_object.createSimObject(self.path())
elif self._ccObject == -1:
raise RuntimeError, "%s: recursive call to getCCObject()" \
% self.path()
return self._ccObject
# Create C++ port connections corresponding to the connections in
# _port_refs (& recursively for all children)
def connectPorts(self):
for portRef in self._port_refs.itervalues():
portRef.ccConnect()
for child in self._children.itervalues():
child.connectPorts()
def startDrain(self, drain_event, recursive):
count = 0
if isinstance(self, SimObject):
count += self._ccObject.drain(drain_event)
if recursive:
for child in self._children.itervalues():
count += child.startDrain(drain_event, True)
return count
def resume(self):
if isinstance(self, SimObject):
self._ccObject.resume()
for child in self._children.itervalues():
child.resume()
def getMemoryMode(self):
if not isinstance(self, m5.objects.System):
return None
system_ptr = internal.sim_object.convertToSystemPtr(self._ccObject)
return system_ptr.getMemoryMode()
def changeTiming(self, mode):
if isinstance(self, m5.objects.System):
# i don't know if there's a better way to do this - calling
# setMemoryMode directly from self._ccObject results in calling
# SimObject::setMemoryMode, not the System::setMemoryMode
system_ptr = internal.sim_object.convertToSystemPtr(self._ccObject)
system_ptr.setMemoryMode(mode)
for child in self._children.itervalues():
child.changeTiming(mode)
def takeOverFrom(self, old_cpu):
cpu_ptr = internal.sim_object.convertToBaseCPUPtr(old_cpu._ccObject)
self._ccObject.takeOverFrom(cpu_ptr)
# generate output file for 'dot' to display as a pretty graph.
# this code is currently broken.
def outputDot(self, dot):
label = "{%s|" % self.path
if isSimObject(self.realtype):
label += '%s|' % self.type
if self.children:
# instantiate children in same order they were added for
# backward compatibility (else we can end up with cpu1
# before cpu0).
for c in self.children:
dot.add_edge(pydot.Edge(self.path,c.path, style="bold"))
simobjs = []
for param in self.params:
try:
if param.value is None:
raise AttributeError, 'Parameter with no value'
value = param.value
string = param.string(value)
except Exception, e:
msg = 'exception in %s:%s\n%s' % (self.name, param.name, e)
e.args = (msg, )
raise
if isSimObject(param.ptype) and string != "Null":
simobjs.append(string)
else:
label += '%s = %s\\n' % (param.name, string)
for so in simobjs:
label += "|<%s> %s" % (so, so)
dot.add_edge(pydot.Edge("%s:%s" % (self.path, so), so,
tailport="w"))
label += '}'
dot.add_node(pydot.Node(self.path,shape="Mrecord",label=label))
# recursively dump out children
for c in self.children:
c.outputDot(dot)
# Function to provide to C++ so it can look up instances based on paths
def resolveSimObject(name):
obj = instanceDict[name]
return obj.getCCObject()
# __all__ defines the list of symbols that get exported when
# 'from config import *' is invoked. Try to keep this reasonably
# short to avoid polluting other namespaces.
__all__ = ['SimObject']
# see comment on imports at end of __init__.py.
import proxy
import internal
import m5