gem5/src/arch/hsail/gen.py
Tony Gutierrez 74249f80df hsail,gpu-compute: fixes to appease clang++
fixes to appease clang++. tested on:

Ubuntu clang version 3.5.0-4ubuntu2~trusty2
(tags/RELEASE_350/final) (based on LLVM 3.5.0)

Ubuntu clang version 3.6.0-2ubuntu1~trusty1
(tags/RELEASE_360/final) (based on LLVM 3.6.0)

the fixes address the following five issues:

1) the exec continuations in gpu_static_inst.hh were marked
   as protected when they should be public. here we mark
   them as public

2) the Abs instruction uses std::abs() in its execute method.
   because Abs is templated, it can also operate on U32 and U64,
   types, which cause Abs::execute() to pass uint32_t and uint64_t
   types to std::abs() respectively. this triggers a warning
   because std::abs() has no effect in this case. to rememdy this
   we add template specialization for the execute() method of Abs
   when its template paramter is U32 or U64.

3) Some potocols that utilize the code in cprintf.hh were missing
   includes to BoolVec.hh, which defines operator<< for the BoolVec
   type. This would cause issues when the generated code would try
   to pass a BoolVec type to a method in cprintf.hh that used
   operator<< on an instance of a BoolVec.

4) Surprise, clang doesn't like it when you clobber all the bits
   in a newly allocated object. I.e., this code:

   tlb = new GpuTlbEntry\[size\];
   std::memset(tlb, 0, sizeof(GpuTlbEntry) \* size);

   Let's use std::vector to track the TLB entries in the GpuTlb now...

5) There were a few variables used only in DPRINTFs, so we mark them
   with M5_VAR_USED.
2016-10-26 22:48:45 -04:00

853 lines
25 KiB
Python
Executable file

#! /usr/bin/python
#
# Copyright (c) 2015 Advanced Micro Devices, Inc.
# All rights reserved.
#
# For use for simulation and test purposes only
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# Author: Steve Reinhardt
#
import sys, re
from m5.util import code_formatter
if len(sys.argv) != 4:
print "Error: need 3 args (file names)"
sys.exit(0)
header_code = code_formatter()
decoder_code = code_formatter()
exec_code = code_formatter()
###############
#
# Generate file prologs (includes etc.)
#
###############
header_code('''
#include "arch/hsail/insts/decl.hh"
#include "base/bitfield.hh"
#include "gpu-compute/hsail_code.hh"
#include "gpu-compute/wavefront.hh"
namespace HsailISA
{
''')
header_code.indent()
decoder_code('''
#include "arch/hsail/gpu_decoder.hh"
#include "arch/hsail/insts/branch.hh"
#include "arch/hsail/insts/decl.hh"
#include "arch/hsail/insts/gen_decl.hh"
#include "arch/hsail/insts/mem.hh"
#include "arch/hsail/insts/mem_impl.hh"
#include "gpu-compute/brig_object.hh"
namespace HsailISA
{
std::vector<GPUStaticInst*> Decoder::decodedInsts;
GPUStaticInst*
Decoder::decode(MachInst machInst)
{
using namespace Brig;
const BrigInstBase *ib = machInst.brigInstBase;
const BrigObject *obj = machInst.brigObj;
switch(ib->opcode) {
''')
decoder_code.indent()
decoder_code.indent()
exec_code('''
#include "arch/hsail/insts/gen_decl.hh"
#include "base/intmath.hh"
namespace HsailISA
{
''')
exec_code.indent()
###############
#
# Define code templates for class declarations (for header file)
#
###############
# Basic header template for an instruction with no template parameters.
header_template_nodt = '''
class $class_name : public $base_class
{
public:
typedef $base_class Base;
$class_name(const Brig::BrigInstBase *ib, const BrigObject *obj)
: Base(ib, obj, "$opcode")
{
}
void execute(GPUDynInstPtr gpuDynInst);
};
'''
# Basic header template for an instruction with a single DataType
# template parameter.
header_template_1dt = '''
template<typename DataType>
class $class_name : public $base_class<DataType>
{
public:
typedef $base_class<DataType> Base;
typedef typename DataType::CType CType;
$class_name(const Brig::BrigInstBase *ib, const BrigObject *obj)
: Base(ib, obj, "$opcode")
{
}
void execute(GPUDynInstPtr gpuDynInst);
};
'''
header_template_1dt_noexec = '''
template<typename DataType>
class $class_name : public $base_class<DataType>
{
public:
typedef $base_class<DataType> Base;
typedef typename DataType::CType CType;
$class_name(const Brig::BrigInstBase *ib, const BrigObject *obj)
: Base(ib, obj, "$opcode")
{
}
};
'''
# Same as header_template_1dt, except the base class has a second
# template parameter NumSrcOperands to allow a variable number of
# source operands. Note that since this is implemented with an array,
# it only works for instructions where all sources are of the same
# type (like most arithmetics).
header_template_1dt_varsrcs = '''
template<typename DataType>
class $class_name : public $base_class<DataType, $num_srcs>
{
public:
typedef $base_class<DataType, $num_srcs> Base;
typedef typename DataType::CType CType;
$class_name(const Brig::BrigInstBase *ib, const BrigObject *obj)
: Base(ib, obj, "$opcode")
{
}
void execute(GPUDynInstPtr gpuDynInst);
};
'''
# Header template for instruction with two DataType template
# parameters, one for the dest and one for the source. This is used
# by compare and convert.
header_template_2dt = '''
template<typename DestDataType, class SrcDataType>
class $class_name : public $base_class<DestDataType, SrcDataType>
{
public:
typedef $base_class<DestDataType, SrcDataType> Base;
typedef typename DestDataType::CType DestCType;
typedef typename SrcDataType::CType SrcCType;
$class_name(const Brig::BrigInstBase *ib, const BrigObject *obj)
: Base(ib, obj, "$opcode")
{
}
void execute(GPUDynInstPtr gpuDynInst);
};
'''
header_templates = {
'ArithInst': header_template_1dt_varsrcs,
'CmovInst': header_template_1dt,
'ClassInst': header_template_1dt,
'ShiftInst': header_template_1dt,
'ExtractInsertInst': header_template_1dt,
'CmpInst': header_template_2dt,
'CvtInst': header_template_2dt,
'LdInst': '',
'StInst': '',
'SpecialInstNoSrc': header_template_nodt,
'SpecialInst1Src': header_template_nodt,
'SpecialInstNoSrcNoDest': '',
}
###############
#
# Define code templates for exec functions
#
###############
# exec function body
exec_template_nodt_nosrc = '''
void
$class_name::execute(GPUDynInstPtr gpuDynInst)
{
Wavefront *w = gpuDynInst->wavefront();
typedef Base::DestCType DestCType;
const VectorMask &mask = w->getPred();
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
DestCType dest_val = $expr;
this->dest.set(w, lane, dest_val);
}
}
}
'''
exec_template_nodt_1src = '''
void
$class_name::execute(GPUDynInstPtr gpuDynInst)
{
Wavefront *w = gpuDynInst->wavefront();
typedef Base::DestCType DestCType;
typedef Base::SrcCType SrcCType;
const VectorMask &mask = w->getPred();
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
SrcCType src_val0 = this->src0.get<SrcCType>(w, lane);
DestCType dest_val = $expr;
this->dest.set(w, lane, dest_val);
}
}
}
'''
exec_template_1dt_varsrcs = '''
template<typename DataType>
void
$class_name<DataType>::execute(GPUDynInstPtr gpuDynInst)
{
Wavefront *w = gpuDynInst->wavefront();
const VectorMask &mask = w->getPred();
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
CType dest_val;
if ($dest_is_src_flag) {
dest_val = this->dest.template get<CType>(w, lane);
}
CType src_val[$num_srcs];
for (int i = 0; i < $num_srcs; ++i) {
src_val[i] = this->src[i].template get<CType>(w, lane);
}
dest_val = (CType)($expr);
this->dest.set(w, lane, dest_val);
}
}
}
'''
exec_template_1dt_3srcs = '''
template<typename DataType>
void
$class_name<DataType>::execute(GPUDynInstPtr gpuDynInst)
{
Wavefront *w = gpuDynInst->wavefront();
typedef typename Base::Src0CType Src0T;
typedef typename Base::Src1CType Src1T;
typedef typename Base::Src2CType Src2T;
const VectorMask &mask = w->getPred();
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
CType dest_val;
if ($dest_is_src_flag) {
dest_val = this->dest.template get<CType>(w, lane);
}
Src0T src_val0 = this->src0.template get<Src0T>(w, lane);
Src1T src_val1 = this->src1.template get<Src1T>(w, lane);
Src2T src_val2 = this->src2.template get<Src2T>(w, lane);
dest_val = $expr;
this->dest.set(w, lane, dest_val);
}
}
}
'''
exec_template_1dt_2src_1dest = '''
template<typename DataType>
void
$class_name<DataType>::execute(GPUDynInstPtr gpuDynInst)
{
Wavefront *w = gpuDynInst->wavefront();
typedef typename Base::DestCType DestT;
typedef CType Src0T;
typedef typename Base::Src1CType Src1T;
const VectorMask &mask = w->getPred();
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
DestT dest_val;
if ($dest_is_src_flag) {
dest_val = this->dest.template get<DestT>(w, lane);
}
Src0T src_val0 = this->src0.template get<Src0T>(w, lane);
Src1T src_val1 = this->src1.template get<Src1T>(w, lane);
dest_val = $expr;
this->dest.set(w, lane, dest_val);
}
}
}
'''
exec_template_shift = '''
template<typename DataType>
void
$class_name<DataType>::execute(GPUDynInstPtr gpuDynInst)
{
Wavefront *w = gpuDynInst->wavefront();
const VectorMask &mask = w->getPred();
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
CType dest_val;
if ($dest_is_src_flag) {
dest_val = this->dest.template get<CType>(w, lane);
}
CType src_val0 = this->src0.template get<CType>(w, lane);
uint32_t src_val1 = this->src1.template get<uint32_t>(w, lane);
dest_val = $expr;
this->dest.set(w, lane, dest_val);
}
}
}
'''
exec_template_2dt = '''
template<typename DestDataType, class SrcDataType>
void
$class_name<DestDataType, SrcDataType>::execute(GPUDynInstPtr gpuDynInst)
{
Wavefront *w = gpuDynInst->wavefront();
const VectorMask &mask = w->getPred();
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
DestCType dest_val;
SrcCType src_val[$num_srcs];
for (int i = 0; i < $num_srcs; ++i) {
src_val[i] = this->src[i].template get<SrcCType>(w, lane);
}
dest_val = $expr;
this->dest.set(w, lane, dest_val);
}
}
}
'''
exec_templates = {
'ArithInst': exec_template_1dt_varsrcs,
'CmovInst': exec_template_1dt_3srcs,
'ExtractInsertInst': exec_template_1dt_3srcs,
'ClassInst': exec_template_1dt_2src_1dest,
'CmpInst': exec_template_2dt,
'CvtInst': exec_template_2dt,
'LdInst': '',
'StInst': '',
'SpecialInstNoSrc': exec_template_nodt_nosrc,
'SpecialInst1Src': exec_template_nodt_1src,
'SpecialInstNoSrcNoDest': '',
}
###############
#
# Define code templates for the decoder cases
#
###############
# decode template for nodt-opcode case
decode_nodt_template = '''
case BRIG_OPCODE_$brig_opcode_upper: return $constructor(ib, obj);'''
decode_case_prolog_class_inst = '''
case BRIG_OPCODE_$brig_opcode_upper:
{
//const BrigOperandBase *baseOp = obj->getOperand(ib->operands[1]);
BrigType16_t type = ((BrigInstSourceType*)ib)->sourceType;
//switch (baseOp->kind) {
// case BRIG_OPERAND_REG:
// type = ((const BrigOperandReg*)baseOp)->type;
// break;
// case BRIG_OPERAND_IMMED:
// type = ((const BrigOperandImmed*)baseOp)->type;
// break;
// default:
// fatal("CLASS unrecognized kind of operand %d\\n",
// baseOp->kind);
//}
switch (type) {'''
# common prolog for 1dt- or 2dt-opcode case: switch on data type
decode_case_prolog = '''
case BRIG_OPCODE_$brig_opcode_upper:
{
switch (ib->type) {'''
# single-level decode case entry (for 1dt opcodes)
decode_case_entry = \
' case BRIG_TYPE_$type_name: return $constructor(ib, obj);'
decode_store_prolog = \
' case BRIG_TYPE_$type_name: {'
decode_store_case_epilog = '''
}'''
decode_store_case_entry = \
' return $constructor(ib, obj);'
# common epilog for type switch
decode_case_epilog = '''
default: fatal("$brig_opcode_upper: unrecognized type %d\\n",
ib->type);
}
}
break;'''
# Additional templates for nested decode on a second type field (for
# compare and convert). These are used in place of the
# decode_case_entry template to create a second-level switch on on the
# second type field inside each case of the first-level type switch.
# Because the name and location of the second type can vary, the Brig
# instruction type must be provided in $brig_type, and the name of the
# second type field must be provided in $type_field.
decode_case2_prolog = '''
case BRIG_TYPE_$type_name:
switch (((Brig$brig_type*)ib)->$type2_field) {'''
decode_case2_entry = \
' case BRIG_TYPE_$type2_name: return $constructor(ib, obj);'
decode_case2_epilog = '''
default: fatal("$brig_opcode_upper: unrecognized $type2_field %d\\n",
((Brig$brig_type*)ib)->$type2_field);
}
break;'''
# Figure out how many source operands an expr needs by looking for the
# highest-numbered srcN value referenced. Since sources are numbered
# starting at 0, the return value is N+1.
def num_src_operands(expr):
if expr.find('src2') != -1:
return 3
elif expr.find('src1') != -1:
return 2
elif expr.find('src0') != -1:
return 1
else:
return 0
###############
#
# Define final code generation methods
#
# The gen_nodt, and gen_1dt, and gen_2dt methods are the interface for
# generating actual instructions.
#
###############
# Generate class declaration, exec function, and decode switch case
# for an brig_opcode with a single-level type switch. The 'types'
# parameter is a list or tuple of types for which the instruction
# should be instantiated.
def gen(brig_opcode, types=None, expr=None, base_class='ArithInst',
type2_info=None, constructor_prefix='new ', is_store=False):
brig_opcode_upper = brig_opcode.upper()
class_name = brig_opcode
opcode = class_name.lower()
if base_class == 'ArithInst':
# note that expr must be provided with ArithInst so we can
# derive num_srcs for the template
assert expr
if expr:
# Derive several bits of info from expr. If expr is not used,
# this info will be irrelevant.
num_srcs = num_src_operands(expr)
# if the RHS expression includes 'dest', then we're doing an RMW
# on the reg and we need to treat it like a source
dest_is_src = expr.find('dest') != -1
dest_is_src_flag = str(dest_is_src).lower() # for C++
if base_class in ['ShiftInst']:
expr = re.sub(r'\bsrc(\d)\b', r'src_val\1', expr)
elif base_class in ['ArithInst', 'CmpInst', 'CvtInst']:
expr = re.sub(r'\bsrc(\d)\b', r'src_val[\1]', expr)
else:
expr = re.sub(r'\bsrc(\d)\b', r'src_val\1', expr)
expr = re.sub(r'\bdest\b', r'dest_val', expr)
# Strip template arguments off of base class before looking up
# appropriate templates
base_class_base = re.sub(r'<.*>$', '', base_class)
header_code(header_templates[base_class_base])
if base_class.startswith('SpecialInst'):
exec_code(exec_templates[base_class_base])
elif base_class.startswith('ShiftInst'):
header_code(exec_template_shift)
else:
header_code(exec_templates[base_class_base])
if not types or isinstance(types, str):
# Just a single type
constructor = constructor_prefix + class_name
decoder_code(decode_nodt_template)
else:
# multiple types, need at least one level of decode
if brig_opcode == 'Class':
decoder_code(decode_case_prolog_class_inst)
else:
decoder_code(decode_case_prolog)
if not type2_info:
if not is_store:
# single list of types, to basic one-level decode
for type_name in types:
full_class_name = '%s<%s>' % (class_name, type_name.upper())
constructor = constructor_prefix + full_class_name
decoder_code(decode_case_entry)
else:
# single list of types, to basic one-level decode
for type_name in types:
decoder_code(decode_store_prolog)
type_size = int(re.findall(r'[0-9]+', type_name)[0])
src_size = 32
type_type = type_name[0]
full_class_name = '%s<%s,%s>' % (class_name, \
type_name.upper(), \
'%s%d' % \
(type_type.upper(), \
type_size))
constructor = constructor_prefix + full_class_name
decoder_code(decode_store_case_entry)
decoder_code(decode_store_case_epilog)
else:
# need secondary type switch (convert, compare)
# unpack extra info on second switch
(type2_field, types2) = type2_info
brig_type = 'Inst%s' % brig_opcode
for type_name in types:
decoder_code(decode_case2_prolog)
fmt = '%s<%s,%%s>' % (class_name, type_name.upper())
for type2_name in types2:
full_class_name = fmt % type2_name.upper()
constructor = constructor_prefix + full_class_name
decoder_code(decode_case2_entry)
decoder_code(decode_case2_epilog)
decoder_code(decode_case_epilog)
###############
#
# Generate instructions
#
###############
# handy abbreviations for common sets of types
# arithmetic ops are typically defined only on 32- and 64-bit sizes
arith_int_types = ('S32', 'U32', 'S64', 'U64')
arith_float_types = ('F32', 'F64')
arith_types = arith_int_types + arith_float_types
bit_types = ('B1', 'B32', 'B64')
all_int_types = ('S8', 'U8', 'S16', 'U16') + arith_int_types
# I think you might be able to do 'f16' memory ops too, but we'll
# ignore them for now.
mem_types = all_int_types + arith_float_types
mem_atom_types = all_int_types + ('B32', 'B64')
##### Arithmetic & logical operations
gen('Add', arith_types, 'src0 + src1')
gen('Sub', arith_types, 'src0 - src1')
gen('Mul', arith_types, 'src0 * src1')
gen('Div', arith_types, 'src0 / src1')
gen('Min', arith_types, 'std::min(src0, src1)')
gen('Max', arith_types, 'std::max(src0, src1)')
gen('Gcnmin', arith_types, 'std::min(src0, src1)')
gen('CopySign', arith_float_types,
'src1 < 0 ? -std::abs(src0) : std::abs(src0)')
gen('Sqrt', arith_float_types, 'sqrt(src0)')
gen('Floor', arith_float_types, 'floor(src0)')
# "fast" sqrt... same as slow for us
gen('Nsqrt', arith_float_types, 'sqrt(src0)')
gen('Nrsqrt', arith_float_types, '1.0/sqrt(src0)')
gen('Nrcp', arith_float_types, '1.0/src0')
gen('Fract', arith_float_types,
'(src0 >= 0.0)?(src0-floor(src0)):(floor(src0)-src0)')
gen('Ncos', arith_float_types, 'cos(src0)');
gen('Nsin', arith_float_types, 'sin(src0)');
gen('And', bit_types, 'src0 & src1')
gen('Or', bit_types, 'src0 | src1')
gen('Xor', bit_types, 'src0 ^ src1')
gen('Bitselect', bit_types, '(src1 & src0) | (src2 & ~src0)')
gen('Firstbit',bit_types, 'firstbit(src0)')
gen('Popcount', ('B32', 'B64'), '__builtin_popcount(src0)')
gen('Shl', arith_int_types, 'src0 << (unsigned)src1', 'ShiftInst')
gen('Shr', arith_int_types, 'src0 >> (unsigned)src1', 'ShiftInst')
# gen('Mul_hi', types=('s32','u32', '??'))
# gen('Mul24', types=('s32','u32', '??'))
gen('Rem', arith_int_types, 'src0 - ((src0 / src1) * src1)')
gen('Abs', arith_types, 'std::abs(src0)')
gen('Neg', arith_types, '-src0')
gen('Mov', bit_types, 'src0')
gen('Not', bit_types, 'heynot(src0)')
# mad and fma differ only in rounding behavior, which we don't emulate
# also there's an integer form of mad, but not of fma
gen('Mad', arith_types, 'src0 * src1 + src2')
gen('Fma', arith_float_types, 'src0 * src1 + src2')
#native floating point operations
gen('Nfma', arith_float_types, 'src0 * src1 + src2')
gen('Cmov', bit_types, 'src0 ? src1 : src2', 'CmovInst')
gen('BitAlign', bit_types, '(src0 << src2)|(src1 >> (32 - src2))')
gen('ByteAlign', bit_types, '(src0 << 8 * src2)|(src1 >> (32 - 8 * src2))')
# see base/bitfield.hh
gen('BitExtract', arith_int_types, 'bits(src0, src1, src1 + src2 - 1)',
'ExtractInsertInst')
gen('BitInsert', arith_int_types, 'insertBits(dest, src1, src2, src0)',
'ExtractInsertInst')
##### Compare
gen('Cmp', ('B1', 'S32', 'U32', 'F32'), 'compare(src0, src1, this->cmpOp)',
'CmpInst', ('sourceType', arith_types + bit_types))
gen('Class', arith_float_types, 'fpclassify(src0,src1)','ClassInst')
##### Conversion
# Conversion operations are only defined on B1, not B32 or B64
cvt_types = ('B1',) + mem_types
gen('Cvt', cvt_types, 'src0', 'CvtInst', ('sourceType', cvt_types))
##### Load & Store
gen('Lda', mem_types, base_class = 'LdInst', constructor_prefix='decode')
gen('Ld', mem_types, base_class = 'LdInst', constructor_prefix='decode')
gen('St', mem_types, base_class = 'StInst', constructor_prefix='decode',
is_store=True)
gen('Atomic', mem_atom_types, base_class='StInst', constructor_prefix='decode')
gen('AtomicNoRet', mem_atom_types, base_class='StInst',
constructor_prefix='decode')
gen('Cbr', base_class = 'LdInst', constructor_prefix='decode')
gen('Br', base_class = 'LdInst', constructor_prefix='decode')
##### Special operations
def gen_special(brig_opcode, expr, dest_type='U32'):
num_srcs = num_src_operands(expr)
if num_srcs == 0:
base_class = 'SpecialInstNoSrc<%s>' % dest_type
elif num_srcs == 1:
base_class = 'SpecialInst1Src<%s>' % dest_type
else:
assert false
gen(brig_opcode, None, expr, base_class)
gen_special('WorkItemId', 'w->workItemId[src0][lane]')
gen_special('WorkItemAbsId',
'w->workItemId[src0][lane] + (w->workGroupId[src0] * w->workGroupSz[src0])')
gen_special('WorkGroupId', 'w->workGroupId[src0]')
gen_special('WorkGroupSize', 'w->workGroupSz[src0]')
gen_special('CurrentWorkGroupSize', 'w->workGroupSz[src0]')
gen_special('GridSize', 'w->gridSz[src0]')
gen_special('GridGroups',
'divCeil(w->gridSz[src0],w->workGroupSz[src0])')
gen_special('LaneId', 'lane')
gen_special('WaveId', 'w->wfId')
gen_special('Clock', 'w->computeUnit->shader->tick_cnt', 'U64')
# gen_special('CU'', ')
gen('Ret', base_class='SpecialInstNoSrcNoDest')
gen('Barrier', base_class='SpecialInstNoSrcNoDest')
gen('MemFence', base_class='SpecialInstNoSrcNoDest')
# Map magic instructions to the BrigSyscall opcode
# Magic instructions are defined in magic.hh
#
# In the future, real HSA kernel system calls can be implemented and coexist
# with magic instructions.
gen('Call', base_class='SpecialInstNoSrcNoDest')
###############
#
# Generate file epilogs
#
###############
header_code('''
template<>
inline void
Abs<U32>::execute(GPUDynInstPtr gpuDynInst)
{
Wavefront *w = gpuDynInst->wavefront();
const VectorMask &mask = w->getPred();
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
CType dest_val;
CType src_val;
src_val = this->src[0].template get<CType>(w, lane);
dest_val = (CType)(src_val);
this->dest.set(w, lane, dest_val);
}
}
}
template<>
inline void
Abs<U64>::execute(GPUDynInstPtr gpuDynInst)
{
Wavefront *w = gpuDynInst->wavefront();
const VectorMask &mask = w->getPred();
for (int lane = 0; lane < w->computeUnit->wfSize(); ++lane) {
if (mask[lane]) {
CType dest_val;
CType src_val;
src_val = this->src[0].template get<CType>(w, lane);
dest_val = (CType)(src_val);
this->dest.set(w, lane, dest_val);
}
}
}
''')
header_code.dedent()
header_code('''
} // namespace HsailISA
''')
# close off main decode switch
decoder_code.dedent()
decoder_code.dedent()
decoder_code('''
default: fatal("unrecognized Brig opcode %d\\n", ib->opcode);
} // end switch(ib->opcode)
} // end decode()
} // namespace HsailISA
''')
exec_code.dedent()
exec_code('''
} // namespace HsailISA
''')
###############
#
# Output accumulated code to files
#
###############
header_code.write(sys.argv[1])
decoder_code.write(sys.argv[2])
exec_code.write(sys.argv[3])