gem5/cpu/exec_context.hh
Kevin Lim 7712232e55 Fixes to allow the ExecContext to be used for profiling.
cpu/base.cc:
    Change to be calls through the ExecContext instead of accessing the profile object directly.
cpu/cpu_exec_context.cc:
    Add functions to clear and sample the profile object.
cpu/cpu_exec_context.hh:
    Add functions to clear and sample the profile object.  These are not the most flexible functions; it might be better to eventually move the quiesce, profile, and store conditional stuff out of ExecContext so they don't clutter the interface.
cpu/exec_context.hh:
    Include functions to support using the profile object to clear itself and take samples.

--HG--
extra : convert_revision : 40849915fd51303673451515debb9ecdc7afb8c8
2006-03-07 22:21:39 -05:00

417 lines
13 KiB
C++

/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_EXEC_CONTEXT_HH__
#define __CPU_EXEC_CONTEXT_HH__
#include "config/full_system.hh"
#include "mem/mem_req.hh"
#include "sim/faults.hh"
#include "sim/host.hh"
#include "sim/serialize.hh"
#include "sim/byteswap.hh"
// forward declaration: see functional_memory.hh
// @todo: Figure out a more architecture independent way to obtain the ITB and
// DTB pointers.
class AlphaDTB;
class AlphaITB;
class BaseCPU;
class Event;
class FunctionalMemory;
class PhysicalMemory;
class Process;
class System;
class ExecContext
{
protected:
typedef TheISA::RegFile RegFile;
typedef TheISA::MachInst MachInst;
typedef TheISA::IntReg IntReg;
typedef TheISA::MiscRegFile MiscRegFile;
typedef TheISA::MiscReg MiscReg;
public:
enum Status
{
/// Initialized but not running yet. All CPUs start in
/// this state, but most transition to Active on cycle 1.
/// In MP or SMT systems, non-primary contexts will stay
/// in this state until a thread is assigned to them.
Unallocated,
/// Running. Instructions should be executed only when
/// the context is in this state.
Active,
/// Temporarily inactive. Entered while waiting for
/// synchronization, etc.
Suspended,
/// Permanently shut down. Entered when target executes
/// m5exit pseudo-instruction. When all contexts enter
/// this state, the simulation will terminate.
Halted
};
virtual ~ExecContext() { };
virtual BaseCPU *getCpuPtr() = 0;
virtual void setCpuId(int id) = 0;
virtual int readCpuId() = 0;
virtual FunctionalMemory *getMemPtr() = 0;
#if FULL_SYSTEM
virtual System *getSystemPtr() = 0;
virtual PhysicalMemory *getPhysMemPtr() = 0;
virtual AlphaITB *getITBPtr() = 0;
virtual AlphaDTB * getDTBPtr() = 0;
#else
virtual Process *getProcessPtr() = 0;
#endif
virtual Status status() const = 0;
virtual void setStatus(Status new_status) = 0;
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
virtual void activate(int delay = 1) = 0;
/// Set the status to Suspended.
virtual void suspend() = 0;
/// Set the status to Unallocated.
virtual void deallocate() = 0;
/// Set the status to Halted.
virtual void halt() = 0;
#if FULL_SYSTEM
virtual void dumpFuncProfile() = 0;
#endif
virtual void takeOverFrom(ExecContext *old_context) = 0;
virtual void regStats(const std::string &name) = 0;
virtual void serialize(std::ostream &os) = 0;
virtual void unserialize(Checkpoint *cp, const std::string &section) = 0;
#if FULL_SYSTEM
virtual Event *getQuiesceEvent() = 0;
// Not necessarily the best location for these...
// Having an extra function just to read these is obnoxious
virtual Tick readLastActivate() = 0;
virtual Tick readLastSuspend() = 0;
virtual void profileClear() = 0;
virtual void profileSample() = 0;
#endif
virtual int getThreadNum() = 0;
virtual bool validInstAddr(Addr addr) = 0;
virtual bool validDataAddr(Addr addr) = 0;
virtual int getInstAsid() = 0;
virtual int getDataAsid() = 0;
virtual Fault translateInstReq(MemReqPtr &req) = 0;
virtual Fault translateDataReadReq(MemReqPtr &req) = 0;
virtual Fault translateDataWriteReq(MemReqPtr &req) = 0;
// Also somewhat obnoxious. Really only used for the TLB fault.
// However, may be quite useful in SPARC.
virtual TheISA::MachInst getInst() = 0;
virtual void copyArchRegs(ExecContext *xc) = 0;
virtual void clearArchRegs() = 0;
//
// New accessors for new decoder.
//
virtual uint64_t readIntReg(int reg_idx) = 0;
virtual float readFloatRegSingle(int reg_idx) = 0;
virtual double readFloatRegDouble(int reg_idx) = 0;
virtual uint64_t readFloatRegInt(int reg_idx) = 0;
virtual void setIntReg(int reg_idx, uint64_t val) = 0;
virtual void setFloatRegSingle(int reg_idx, float val) = 0;
virtual void setFloatRegDouble(int reg_idx, double val) = 0;
virtual void setFloatRegInt(int reg_idx, uint64_t val) = 0;
virtual uint64_t readPC() = 0;
virtual void setPC(uint64_t val) = 0;
virtual uint64_t readNextPC() = 0;
virtual void setNextPC(uint64_t val) = 0;
virtual MiscReg readMiscReg(int misc_reg) = 0;
virtual MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault) = 0;
virtual Fault setMiscReg(int misc_reg, const MiscReg &val) = 0;
virtual Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val) = 0;
// Also not necessarily the best location for these two. Hopefully will go
// away once we decide upon where st cond failures goes.
virtual unsigned readStCondFailures() = 0;
virtual void setStCondFailures(unsigned sc_failures) = 0;
#if FULL_SYSTEM
virtual int readIntrFlag() = 0;
virtual void setIntrFlag(int val) = 0;
virtual Fault hwrei() = 0;
virtual bool inPalMode() = 0;
virtual bool simPalCheck(int palFunc) = 0;
#endif
// Only really makes sense for old CPU model. Still could be useful though.
virtual bool misspeculating() = 0;
#if !FULL_SYSTEM
virtual IntReg getSyscallArg(int i) = 0;
// used to shift args for indirect syscall
virtual void setSyscallArg(int i, IntReg val) = 0;
virtual void setSyscallReturn(SyscallReturn return_value) = 0;
virtual void syscall() = 0;
// Same with st cond failures.
virtual Counter readFuncExeInst() = 0;
virtual void setFuncExeInst(Counter new_val) = 0;
#endif
};
template <class XC>
class ProxyExecContext : public ExecContext
{
public:
ProxyExecContext(XC *actual_xc)
{ actualXC = actual_xc; }
private:
XC *actualXC;
public:
BaseCPU *getCpuPtr() { return actualXC->getCpuPtr(); }
void setCpuId(int id) { actualXC->setCpuId(id); }
int readCpuId() { return actualXC->readCpuId(); }
FunctionalMemory *getMemPtr() { return actualXC->getMemPtr(); }
#if FULL_SYSTEM
System *getSystemPtr() { return actualXC->getSystemPtr(); }
PhysicalMemory *getPhysMemPtr() { return actualXC->getPhysMemPtr(); }
AlphaITB *getITBPtr() { return actualXC->getITBPtr(); }
AlphaDTB *getDTBPtr() { return actualXC->getDTBPtr(); }
#else
Process *getProcessPtr() { return actualXC->getProcessPtr(); }
#endif
Status status() const { return actualXC->status(); }
void setStatus(Status new_status) { actualXC->setStatus(new_status); }
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
void activate(int delay = 1) { actualXC->activate(delay); }
/// Set the status to Suspended.
void suspend() { actualXC->suspend(); }
/// Set the status to Unallocated.
void deallocate() { actualXC->deallocate(); }
/// Set the status to Halted.
void halt() { actualXC->halt(); }
#if FULL_SYSTEM
void dumpFuncProfile() { actualXC->dumpFuncProfile(); }
#endif
void takeOverFrom(ExecContext *oldContext)
{ actualXC->takeOverFrom(oldContext); }
void regStats(const std::string &name) { actualXC->regStats(name); }
void serialize(std::ostream &os) { actualXC->serialize(os); }
void unserialize(Checkpoint *cp, const std::string &section)
{ actualXC->unserialize(cp, section); }
#if FULL_SYSTEM
Event *getQuiesceEvent() { return actualXC->getQuiesceEvent(); }
Tick readLastActivate() { return actualXC->readLastActivate(); }
Tick readLastSuspend() { return actualXC->readLastSuspend(); }
void profileClear() { return actualXC->profileClear(); }
void profileSample() { return actualXC->profileSample(); }
#endif
int getThreadNum() { return actualXC->getThreadNum(); }
bool validInstAddr(Addr addr) { return actualXC->validInstAddr(addr); }
bool validDataAddr(Addr addr) { return actualXC->validDataAddr(addr); }
int getInstAsid() { return actualXC->getInstAsid(); }
int getDataAsid() { return actualXC->getDataAsid(); }
Fault translateInstReq(MemReqPtr &req)
{ return actualXC->translateInstReq(req); }
Fault translateDataReadReq(MemReqPtr &req)
{ return actualXC->translateDataReadReq(req); }
Fault translateDataWriteReq(MemReqPtr &req)
{ return actualXC->translateDataWriteReq(req); }
// @todo: Do I need this?
MachInst getInst() { return actualXC->getInst(); }
// @todo: Do I need this?
void copyArchRegs(ExecContext *xc) { actualXC->copyArchRegs(xc); }
void clearArchRegs() { actualXC->clearArchRegs(); }
//
// New accessors for new decoder.
//
uint64_t readIntReg(int reg_idx)
{ return actualXC->readIntReg(reg_idx); }
float readFloatRegSingle(int reg_idx)
{ return actualXC->readFloatRegSingle(reg_idx); }
double readFloatRegDouble(int reg_idx)
{ return actualXC->readFloatRegDouble(reg_idx); }
uint64_t readFloatRegInt(int reg_idx)
{ return actualXC->readFloatRegInt(reg_idx); }
void setIntReg(int reg_idx, uint64_t val)
{ actualXC->setIntReg(reg_idx, val); }
void setFloatRegSingle(int reg_idx, float val)
{ actualXC->setFloatRegSingle(reg_idx, val); }
void setFloatRegDouble(int reg_idx, double val)
{ actualXC->setFloatRegDouble(reg_idx, val); }
void setFloatRegInt(int reg_idx, uint64_t val)
{ actualXC->setFloatRegInt(reg_idx, val); }
uint64_t readPC() { return actualXC->readPC(); }
void setPC(uint64_t val) { actualXC->setPC(val); }
uint64_t readNextPC() { return actualXC->readNextPC(); }
void setNextPC(uint64_t val) { actualXC->setNextPC(val); }
MiscReg readMiscReg(int misc_reg)
{ return actualXC->readMiscReg(misc_reg); }
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
{ return actualXC->readMiscRegWithEffect(misc_reg, fault); }
Fault setMiscReg(int misc_reg, const MiscReg &val)
{ return actualXC->setMiscReg(misc_reg, val); }
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val)
{ return actualXC->setMiscRegWithEffect(misc_reg, val); }
unsigned readStCondFailures()
{ return actualXC->readStCondFailures(); }
void setStCondFailures(unsigned sc_failures)
{ actualXC->setStCondFailures(sc_failures); }
#if FULL_SYSTEM
int readIntrFlag() { return actualXC->readIntrFlag(); }
void setIntrFlag(int val) { actualXC->setIntrFlag(val); }
Fault hwrei() { return actualXC->hwrei(); }
bool inPalMode() { return actualXC->inPalMode(); }
bool simPalCheck(int palFunc) { return actualXC->simPalCheck(palFunc); }
#endif
// @todo: Fix this!
bool misspeculating() { return actualXC->misspeculating(); }
#if !FULL_SYSTEM
IntReg getSyscallArg(int i) { return actualXC->getSyscallArg(i); }
// used to shift args for indirect syscall
void setSyscallArg(int i, IntReg val)
{ actualXC->setSyscallArg(i, val); }
void setSyscallReturn(SyscallReturn return_value)
{ actualXC->setSyscallReturn(return_value); }
void syscall() { actualXC->syscall(); }
Counter readFuncExeInst() { return actualXC->readFuncExeInst(); }
void setFuncExeInst(Counter new_val)
{ return actualXC->setFuncExeInst(new_val); }
#endif
};
#endif