gem5/cpu/o3/mem_dep_unit.hh
Kevin Lim 77b9829f13 Update #defines for the O3CPU. Also include the copyright.
base/timebuf.hh:
    Updated copyright.
cpu/o3/2bit_local_pred.hh:
cpu/o3/alpha_cpu.hh:
cpu/o3/alpha_cpu_impl.hh:
cpu/o3/alpha_dyn_inst.hh:
cpu/o3/alpha_impl.hh:
cpu/o3/alpha_params.hh:
cpu/o3/btb.hh:
cpu/o3/comm.hh:
cpu/o3/commit.hh:
cpu/o3/cpu.cc:
cpu/o3/cpu.hh:
cpu/o3/cpu_policy.hh:
cpu/o3/decode.hh:
cpu/o3/fetch.hh:
cpu/o3/free_list.hh:
cpu/o3/iew.hh:
cpu/o3/inst_queue.hh:
cpu/o3/mem_dep_unit.hh:
cpu/o3/ras.hh:
cpu/o3/regfile.hh:
cpu/o3/rename.hh:
cpu/o3/rename_map.hh:
cpu/o3/rob.cc:
cpu/o3/rob.hh:
cpu/o3/rob_impl.hh:
cpu/o3/sat_counter.hh:
cpu/o3/store_set.hh:
cpu/o3/tournament_pred.hh:
    Updated #define to have correct path.
docs/footer.html:
    Remove e-mail addr.

--HG--
extra : convert_revision : 68d7af52674621dc3b6d6ac0d564790ffd595fe3
2005-06-05 03:25:26 -04:00

164 lines
5.8 KiB
C++

/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_O3_CPU_MEM_DEP_UNIT_HH__
#define __CPU_O3_CPU_MEM_DEP_UNIT_HH__
#include <map>
#include <set>
#include "base/statistics.hh"
#include "cpu/inst_seq.hh"
/**
* Memory dependency unit class. This holds the memory dependence predictor.
* As memory operations are issued to the IQ, they are also issued to this
* unit, which then looks up the prediction as to what they are dependent
* upon. This unit must be checked prior to a memory operation being able
* to issue. Although this is templated, it's somewhat hard to make a generic
* memory dependence unit. This one is mostly for store sets; it will be
* quite limited in what other memory dependence predictions it can also
* utilize. Thus this class should be most likely be rewritten for other
* dependence prediction schemes.
*/
template <class MemDepPred, class Impl>
class MemDepUnit {
public:
typedef typename Impl::Params Params;
typedef typename Impl::DynInstPtr DynInstPtr;
public:
MemDepUnit(Params &params);
void regStats();
void insert(DynInstPtr &inst);
void insertNonSpec(DynInstPtr &inst);
// Will want to make this operation relatively fast. Right now it
// is somewhat slow.
DynInstPtr &top();
void pop();
void regsReady(DynInstPtr &inst);
void nonSpecInstReady(DynInstPtr &inst);
void issue(DynInstPtr &inst);
void wakeDependents(DynInstPtr &inst);
void squash(const InstSeqNum &squashed_num);
void violation(DynInstPtr &store_inst, DynInstPtr &violating_load);
inline bool empty()
{ return readyInsts.empty(); }
private:
typedef typename std::set<InstSeqNum>::iterator sn_it_t;
typedef typename std::map<InstSeqNum, DynInstPtr>::iterator dyn_it_t;
// Forward declarations so that the following two typedefs work.
class Dependency;
class ltDependency;
typedef typename std::set<Dependency, ltDependency>::iterator dep_it_t;
typedef typename std::map<InstSeqNum, vector<dep_it_t> >::iterator
sd_it_t;
struct Dependency {
Dependency(const InstSeqNum &_seqNum)
: seqNum(_seqNum), regsReady(0), memDepReady(0)
{ }
Dependency(const InstSeqNum &_seqNum, bool _regsReady,
bool _memDepReady)
: seqNum(_seqNum), regsReady(_regsReady),
memDepReady(_memDepReady)
{ }
InstSeqNum seqNum;
mutable bool regsReady;
mutable bool memDepReady;
mutable sd_it_t storeDep;
};
struct ltDependency {
bool operator() (const Dependency &lhs, const Dependency &rhs)
{
return lhs.seqNum < rhs.seqNum;
}
};
inline void moveToReady(dep_it_t &woken_inst);
/** List of instructions that have passed through rename, yet are still
* waiting on either a memory dependence to resolve or source registers to
* become available before they can issue.
*/
std::set<Dependency, ltDependency> waitingInsts;
/** List of instructions that have all their predicted memory dependences
* resolved and their source registers ready.
*/
std::set<InstSeqNum> readyInsts;
// Change this to hold a vector of iterators, which will point to the
// entry of the waiting instructions.
/** List of stores' sequence numbers, each of which has a vector of
* iterators. The iterators point to the appropriate node within
* waitingInsts that has the depenendent instruction.
*/
std::map<InstSeqNum, vector<dep_it_t> > storeDependents;
// For now will implement this as a map...hash table might not be too
// bad, or could move to something that mimics the current dependency
// graph.
std::map<InstSeqNum, DynInstPtr> memInsts;
// Iterator pointer to the top instruction which has is ready.
// Is set by the top() call.
dyn_it_t topInst;
/** The memory dependence predictor. It is accessed upon new
* instructions being added to the IQ, and responds by telling
* this unit what instruction the newly added instruction is dependent
* upon.
*/
MemDepPred depPred;
Stats::Scalar<> insertedLoads;
Stats::Scalar<> insertedStores;
Stats::Scalar<> conflictingLoads;
Stats::Scalar<> conflictingStores;
};
#endif // __CPU_O3_CPU_MEM_DEP_UNIT_HH__