gem5/cpu/base.cc
Kevin Lim 716ceb6c10 Code update for CPU models.
arch/alpha/isa_traits.hh:
    Add in clear functions.
cpu/base.cc:
cpu/base.hh:
    Add in CPU progress event.
cpu/base_dyn_inst.hh:
    Mimic normal registers in terms of writing/reading floats.
cpu/checker/cpu.cc:
cpu/checker/cpu.hh:
cpu/checker/cpu_builder.cc:
cpu/checker/o3_cpu_builder.cc:
    Fix up stuff.
cpu/cpu_exec_context.cc:
cpu/cpu_exec_context.hh:
cpu/o3/cpu.cc:
cpu/o3/cpu.hh:
    Bring up to speed with newmem.
cpu/o3/alpha_cpu_builder.cc:
    Allow for progress intervals.
cpu/o3/tournament_pred.cc:
    Fix up predictor.
cpu/o3/tournament_pred.hh:
cpu/ozone/cpu.hh:
cpu/ozone/cpu_impl.hh:
cpu/simple/cpu.cc:
    Fixes.
cpu/ozone/cpu_builder.cc:
    Allow progress interval.
cpu/ozone/front_end_impl.hh:
    Comment out this message.
cpu/ozone/lw_back_end_impl.hh:
    Remove this.
python/m5/objects/BaseCPU.py:
    Add progress interval.
python/m5/objects/Root.py:
    Allow for stat reset.
sim/serialize.cc:
sim/stat_control.cc:
    Add in stats reset.

--HG--
extra : convert_revision : fdb5ac5542099173cc30c40ea93372a065534b5e
2006-08-11 17:42:59 -04:00

402 lines
11 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <iostream>
#include <string>
#include <sstream>
#include "base/cprintf.hh"
#include "base/loader/symtab.hh"
#include "base/misc.hh"
#include "base/output.hh"
#include "cpu/base.hh"
#include "cpu/exec_context.hh"
#include "cpu/profile.hh"
#include "cpu/sampler/sampler.hh"
#include "sim/param.hh"
#include "sim/process.hh"
#include "sim/sim_events.hh"
#include "sim/system.hh"
#include "base/trace.hh"
using namespace std;
vector<BaseCPU *> BaseCPU::cpuList;
// This variable reflects the max number of threads in any CPU. Be
// careful to only use it once all the CPUs that you care about have
// been initialized
int maxThreadsPerCPU = 1;
void
CPUProgressEvent::process()
{
#ifndef NDEBUG
Counter temp = cpu->totalInstructions();
double ipc = double(temp - lastNumInst) / (interval / cpu->cycles(1));
DPRINTFN("%s progress event, instructions committed: %lli, IPC: %0.8d\n",
cpu->name(), temp - lastNumInst, ipc);
ipc = 0.0;
lastNumInst = temp;
schedule(curTick + interval);
#endif
}
const char *
CPUProgressEvent::description()
{
return "CPU Progress event";
}
#if FULL_SYSTEM
BaseCPU::BaseCPU(Params *p)
: SimObject(p->name), clock(p->clock), checkInterrupts(true),
params(p), number_of_threads(p->numberOfThreads), system(p->system)
#else
BaseCPU::BaseCPU(Params *p)
: SimObject(p->name), clock(p->clock), params(p),
number_of_threads(p->numberOfThreads)
#endif
{
DPRINTF(FullCPU, "BaseCPU: Creating object, mem address %#x.\n", this);
// add self to global list of CPUs
cpuList.push_back(this);
DPRINTF(FullCPU, "BaseCPU: CPU added to cpuList, mem address %#x.\n",
this);
if (number_of_threads > maxThreadsPerCPU)
maxThreadsPerCPU = number_of_threads;
// allocate per-thread instruction-based event queues
comInstEventQueue = new EventQueue *[number_of_threads];
for (int i = 0; i < number_of_threads; ++i)
comInstEventQueue[i] = new EventQueue("instruction-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (p->max_insts_any_thread != 0)
for (int i = 0; i < number_of_threads; ++i)
new SimExitEvent(comInstEventQueue[i], p->max_insts_any_thread,
"a thread reached the max instruction count");
if (p->max_insts_all_threads != 0) {
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = number_of_threads;
for (int i = 0; i < number_of_threads; ++i)
new CountedExitEvent(comInstEventQueue[i],
"all threads reached the max instruction count",
p->max_insts_all_threads, *counter);
}
// allocate per-thread load-based event queues
comLoadEventQueue = new EventQueue *[number_of_threads];
for (int i = 0; i < number_of_threads; ++i)
comLoadEventQueue[i] = new EventQueue("load-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (p->max_loads_any_thread != 0)
for (int i = 0; i < number_of_threads; ++i)
new SimExitEvent(comLoadEventQueue[i], p->max_loads_any_thread,
"a thread reached the max load count");
if (p->max_loads_all_threads != 0) {
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = number_of_threads;
for (int i = 0; i < number_of_threads; ++i)
new CountedExitEvent(comLoadEventQueue[i],
"all threads reached the max load count",
p->max_loads_all_threads, *counter);
}
#if FULL_SYSTEM
memset(interrupts, 0, sizeof(interrupts));
intstatus = 0;
#endif
functionTracingEnabled = false;
if (p->functionTrace) {
functionTraceStream = simout.find(csprintf("ftrace.%s", name()));
currentFunctionStart = currentFunctionEnd = 0;
functionEntryTick = p->functionTraceStart;
if (p->functionTraceStart == 0) {
functionTracingEnabled = true;
} else {
Event *e =
new EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace>(this,
true);
e->schedule(p->functionTraceStart);
}
}
#if FULL_SYSTEM
profileEvent = NULL;
if (params->profile)
profileEvent = new ProfileEvent(this, params->profile);
#endif
}
BaseCPU::Params::Params()
{
#if FULL_SYSTEM
profile = false;
#endif
checker = NULL;
}
void
BaseCPU::enableFunctionTrace()
{
functionTracingEnabled = true;
}
BaseCPU::~BaseCPU()
{
}
void
BaseCPU::init()
{
if (!params->deferRegistration)
registerExecContexts();
}
void
BaseCPU::startup()
{
#if FULL_SYSTEM
if (!params->deferRegistration && profileEvent)
profileEvent->schedule(curTick);
#endif
if (params->progress_interval) {
new CPUProgressEvent(&mainEventQueue, params->progress_interval,
this);
}
}
void
BaseCPU::regStats()
{
using namespace Stats;
numCycles
.name(name() + ".numCycles")
.desc("number of cpu cycles simulated")
;
int size = execContexts.size();
if (size > 1) {
for (int i = 0; i < size; ++i) {
stringstream namestr;
ccprintf(namestr, "%s.ctx%d", name(), i);
execContexts[i]->regStats(namestr.str());
}
} else if (size == 1)
execContexts[0]->regStats(name());
#if FULL_SYSTEM
#endif
}
void
BaseCPU::registerExecContexts()
{
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
if (xc->status() == ExecContext::Suspended) {
#if FULL_SYSTEM
int id = params->cpu_id;
if (id != -1)
id += i;
xc->setCpuId(system->registerExecContext(xc, id));
#else
xc->setCpuId(xc->getProcessPtr()->registerExecContext(xc));
#endif
}
}
}
void
BaseCPU::switchOut(Sampler *sampler)
{
panic("This CPU doesn't support sampling!");
}
void
BaseCPU::takeOverFrom(BaseCPU *oldCPU)
{
assert(execContexts.size() == oldCPU->execContexts.size());
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *newXC = execContexts[i];
ExecContext *oldXC = oldCPU->execContexts[i];
newXC->takeOverFrom(oldXC);
assert(newXC->readCpuId() == oldXC->readCpuId());
#if FULL_SYSTEM
system->replaceExecContext(newXC, newXC->readCpuId());
#else
assert(newXC->getProcessPtr() == oldXC->getProcessPtr());
newXC->getProcessPtr()->replaceExecContext(newXC, newXC->readCpuId());
#endif
}
#if FULL_SYSTEM
for (int i = 0; i < TheISA::NumInterruptLevels; ++i)
interrupts[i] = oldCPU->interrupts[i];
intstatus = oldCPU->intstatus;
for (int i = 0; i < execContexts.size(); ++i)
execContexts[i]->profileClear();
if (profileEvent)
profileEvent->schedule(curTick);
#endif
}
#if FULL_SYSTEM
BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, int _interval)
: Event(&mainEventQueue), cpu(_cpu), interval(_interval)
{ }
void
BaseCPU::ProfileEvent::process()
{
for (int i = 0, size = cpu->execContexts.size(); i < size; ++i) {
ExecContext *xc = cpu->execContexts[i];
xc->profileSample();
}
schedule(curTick + interval);
}
void
BaseCPU::post_interrupt(int int_num, int index)
{
DPRINTF(Interrupt, "Interrupt %d:%d posted\n", int_num, index);
if (int_num < 0 || int_num >= TheISA::NumInterruptLevels)
panic("int_num out of bounds\n");
if (index < 0 || index >= sizeof(uint64_t) * 8)
panic("int_num out of bounds\n");
checkInterrupts = true;
interrupts[int_num] |= 1 << index;
intstatus |= (ULL(1) << int_num);
}
void
BaseCPU::clear_interrupt(int int_num, int index)
{
DPRINTF(Interrupt, "Interrupt %d:%d cleared\n", int_num, index);
if (int_num < 0 || int_num >= TheISA::NumInterruptLevels)
panic("int_num out of bounds\n");
if (index < 0 || index >= sizeof(uint64_t) * 8)
panic("int_num out of bounds\n");
interrupts[int_num] &= ~(1 << index);
if (interrupts[int_num] == 0)
intstatus &= ~(ULL(1) << int_num);
}
void
BaseCPU::clear_interrupts()
{
DPRINTF(Interrupt, "Interrupts all cleared\n");
memset(interrupts, 0, sizeof(interrupts));
intstatus = 0;
}
void
BaseCPU::serialize(std::ostream &os)
{
SERIALIZE_ARRAY(interrupts, TheISA::NumInterruptLevels);
SERIALIZE_SCALAR(intstatus);
}
void
BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_ARRAY(interrupts, TheISA::NumInterruptLevels);
UNSERIALIZE_SCALAR(intstatus);
}
#endif // FULL_SYSTEM
void
BaseCPU::traceFunctionsInternal(Addr pc)
{
if (!debugSymbolTable)
return;
// if pc enters different function, print new function symbol and
// update saved range. Otherwise do nothing.
if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
string sym_str;
bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
currentFunctionStart,
currentFunctionEnd);
if (!found) {
// no symbol found: use addr as label
sym_str = csprintf("0x%x", pc);
currentFunctionStart = pc;
currentFunctionEnd = pc + 1;
}
ccprintf(*functionTraceStream, " (%d)\n%d: %s",
curTick - functionEntryTick, curTick, sym_str);
functionEntryTick = curTick;
}
}
DEFINE_SIM_OBJECT_CLASS_NAME("BaseCPU", BaseCPU)