gem5/src/mem/ruby/slicc_interface/AbstractController.cc
David Guillen Fandos 70798b1ba0 stats: Fixing regStats function for some SimObjects
Fixing an issue with regStats not calling the parent class method
for most SimObjects in Gem5. This causes issues if one adds new
stats in the base class (since they are never initialized properly!).

Change-Id: Iebc5aa66f58816ef4295dc8e48a357558d76a77c
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
2016-06-06 17:16:43 +01:00

366 lines
11 KiB
C++

/*
* Copyright (c) 2011-2014 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mem/ruby/slicc_interface/AbstractController.hh"
#include "debug/RubyQueue.hh"
#include "mem/protocol/MemoryMsg.hh"
#include "mem/ruby/system/RubySystem.hh"
#include "mem/ruby/system/Sequencer.hh"
#include "mem/ruby/system/GPUCoalescer.hh"
#include "sim/system.hh"
AbstractController::AbstractController(const Params *p)
: MemObject(p), Consumer(this), m_version(p->version),
m_clusterID(p->cluster_id),
m_masterId(p->system->getMasterId(name())), m_is_blocking(false),
m_number_of_TBEs(p->number_of_TBEs),
m_transitions_per_cycle(p->transitions_per_cycle),
m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency),
memoryPort(csprintf("%s.memory", name()), this, "")
{
if (m_version == 0) {
// Combine the statistics from all controllers
// of this particular type.
Stats::registerDumpCallback(new StatsCallback(this));
}
}
void
AbstractController::init()
{
params()->ruby_system->registerAbstractController(this);
m_delayHistogram.init(10);
uint32_t size = Network::getNumberOfVirtualNetworks();
for (uint32_t i = 0; i < size; i++) {
m_delayVCHistogram.push_back(new Stats::Histogram());
m_delayVCHistogram[i]->init(10);
}
}
void
AbstractController::resetStats()
{
m_delayHistogram.reset();
uint32_t size = Network::getNumberOfVirtualNetworks();
for (uint32_t i = 0; i < size; i++) {
m_delayVCHistogram[i]->reset();
}
}
void
AbstractController::regStats()
{
MemObject::regStats();
m_fully_busy_cycles
.name(name() + ".fully_busy_cycles")
.desc("cycles for which number of transistions == max transitions")
.flags(Stats::nozero);
}
void
AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay)
{
assert(virtualNetwork < m_delayVCHistogram.size());
m_delayHistogram.sample(delay);
m_delayVCHistogram[virtualNetwork]->sample(delay);
}
void
AbstractController::stallBuffer(MessageBuffer* buf, Addr addr)
{
if (m_waiting_buffers.count(addr) == 0) {
MsgVecType* msgVec = new MsgVecType;
msgVec->resize(m_in_ports, NULL);
m_waiting_buffers[addr] = msgVec;
}
DPRINTF(RubyQueue, "stalling %s port %d addr %#x\n", buf, m_cur_in_port,
addr);
assert(m_in_ports > m_cur_in_port);
(*(m_waiting_buffers[addr]))[m_cur_in_port] = buf;
}
void
AbstractController::wakeUpBuffers(Addr addr)
{
if (m_waiting_buffers.count(addr) > 0) {
//
// Wake up all possible lower rank (i.e. lower priority) buffers that could
// be waiting on this message.
//
for (int in_port_rank = m_cur_in_port - 1;
in_port_rank >= 0;
in_port_rank--) {
if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
(*(m_waiting_buffers[addr]))[in_port_rank]->
reanalyzeMessages(addr, clockEdge());
}
}
delete m_waiting_buffers[addr];
m_waiting_buffers.erase(addr);
}
}
void
AbstractController::wakeUpAllBuffers(Addr addr)
{
if (m_waiting_buffers.count(addr) > 0) {
//
// Wake up all possible lower rank (i.e. lower priority) buffers that could
// be waiting on this message.
//
for (int in_port_rank = m_in_ports - 1;
in_port_rank >= 0;
in_port_rank--) {
if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
(*(m_waiting_buffers[addr]))[in_port_rank]->
reanalyzeMessages(addr, clockEdge());
}
}
delete m_waiting_buffers[addr];
m_waiting_buffers.erase(addr);
}
}
void
AbstractController::wakeUpAllBuffers()
{
//
// Wake up all possible buffers that could be waiting on any message.
//
std::vector<MsgVecType*> wokeUpMsgVecs;
MsgBufType wokeUpMsgBufs;
if (m_waiting_buffers.size() > 0) {
for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin();
buf_iter != m_waiting_buffers.end();
++buf_iter) {
for (MsgVecType::iterator vec_iter = buf_iter->second->begin();
vec_iter != buf_iter->second->end();
++vec_iter) {
//
// Make sure the MessageBuffer has not already be reanalyzed
//
if (*vec_iter != NULL &&
(wokeUpMsgBufs.count(*vec_iter) == 0)) {
(*vec_iter)->reanalyzeAllMessages(clockEdge());
wokeUpMsgBufs.insert(*vec_iter);
}
}
wokeUpMsgVecs.push_back(buf_iter->second);
}
for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin();
wb_iter != wokeUpMsgVecs.end();
++wb_iter) {
delete (*wb_iter);
}
m_waiting_buffers.clear();
}
}
void
AbstractController::blockOnQueue(Addr addr, MessageBuffer* port)
{
m_is_blocking = true;
m_block_map[addr] = port;
}
bool
AbstractController::isBlocked(Addr addr) const
{
return m_is_blocking && (m_block_map.find(addr) != m_block_map.end());
}
void
AbstractController::unblock(Addr addr)
{
m_block_map.erase(addr);
if (m_block_map.size() == 0) {
m_is_blocking = false;
}
}
bool
AbstractController::isBlocked(Addr addr)
{
return (m_block_map.count(addr) > 0);
}
BaseMasterPort &
AbstractController::getMasterPort(const std::string &if_name,
PortID idx)
{
return memoryPort;
}
void
AbstractController::queueMemoryRead(const MachineID &id, Addr addr,
Cycles latency)
{
RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0,
m_masterId);
PacketPtr pkt = Packet::createRead(req);
uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
pkt->dataDynamic(newData);
SenderState *s = new SenderState(id);
pkt->pushSenderState(s);
// Use functional rather than timing accesses during warmup
if (RubySystem::getWarmupEnabled()) {
memoryPort.sendFunctional(pkt);
recvTimingResp(pkt);
return;
}
memoryPort.schedTimingReq(pkt, clockEdge(latency));
}
void
AbstractController::queueMemoryWrite(const MachineID &id, Addr addr,
Cycles latency, const DataBlock &block)
{
RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0,
m_masterId);
PacketPtr pkt = Packet::createWrite(req);
uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
pkt->dataDynamic(newData);
memcpy(newData, block.getData(0, RubySystem::getBlockSizeBytes()),
RubySystem::getBlockSizeBytes());
SenderState *s = new SenderState(id);
pkt->pushSenderState(s);
// Use functional rather than timing accesses during warmup
if (RubySystem::getWarmupEnabled()) {
memoryPort.sendFunctional(pkt);
recvTimingResp(pkt);
return;
}
// Create a block and copy data from the block.
memoryPort.schedTimingReq(pkt, clockEdge(latency));
}
void
AbstractController::queueMemoryWritePartial(const MachineID &id, Addr addr,
Cycles latency,
const DataBlock &block, int size)
{
RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0,
m_masterId);
PacketPtr pkt = Packet::createWrite(req);
uint8_t *newData = new uint8_t[size];
pkt->dataDynamic(newData);
memcpy(newData, block.getData(getOffset(addr), size), size);
SenderState *s = new SenderState(id);
pkt->pushSenderState(s);
// Create a block and copy data from the block.
memoryPort.schedTimingReq(pkt, clockEdge(latency));
}
void
AbstractController::functionalMemoryRead(PacketPtr pkt)
{
memoryPort.sendFunctional(pkt);
}
int
AbstractController::functionalMemoryWrite(PacketPtr pkt)
{
int num_functional_writes = 0;
// Check the buffer from the controller to the memory.
if (memoryPort.checkFunctional(pkt)) {
num_functional_writes++;
}
// Update memory itself.
memoryPort.sendFunctional(pkt);
return num_functional_writes + 1;
}
void
AbstractController::recvTimingResp(PacketPtr pkt)
{
assert(getMemoryQueue());
assert(pkt->isResponse());
std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge());
(*msg).m_addr = pkt->getAddr();
(*msg).m_Sender = m_machineID;
SenderState *s = dynamic_cast<SenderState *>(pkt->senderState);
(*msg).m_OriginalRequestorMachId = s->id;
delete s;
if (pkt->isRead()) {
(*msg).m_Type = MemoryRequestType_MEMORY_READ;
(*msg).m_MessageSize = MessageSizeType_Response_Data;
// Copy data from the packet
(*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0,
RubySystem::getBlockSizeBytes());
} else if (pkt->isWrite()) {
(*msg).m_Type = MemoryRequestType_MEMORY_WB;
(*msg).m_MessageSize = MessageSizeType_Writeback_Control;
} else {
panic("Incorrect packet type received from memory controller!");
}
getMemoryQueue()->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
delete pkt->req;
delete pkt;
}
bool
AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt)
{
controller->recvTimingResp(pkt);
return true;
}
AbstractController::MemoryPort::MemoryPort(const std::string &_name,
AbstractController *_controller,
const std::string &_label)
: QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue),
reqQueue(*_controller, *this, _label),
snoopRespQueue(*_controller, *this, _label),
controller(_controller)
{
}