gem5/src/mem/protocol/MOSI_SMP_bcast_1level-cache.sm
Nathan Binkert 2f30950143 ruby: Import ruby and slicc from GEMS
We eventually plan to replace the m5 cache hierarchy with the GEMS
hierarchy, but for now we will make both live alongside eachother.
2009-05-11 10:38:43 -07:00

921 lines
27 KiB
Text

/*
* Copyright (c) 1999-2005 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* $Id$
*/
machine(L1Cache, "MOSI Broadcast Optimized") {
MessageBuffer addressFromCache, network="To", virtual_network="0", ordered="true";
MessageBuffer dataFromCache, network="To", virtual_network="1", ordered="false";
MessageBuffer addressToCache, network="From", virtual_network="0", ordered="true";
MessageBuffer dataToCache, network="From", virtual_network="1", ordered="false";
// STATES
enumeration(State, desc="Cache states", default="L1Cache_State_I") {
NP, desc="Not Present";
I, desc="Idle";
S, desc="Shared";
O, desc="Owned";
M, desc="Modified", format="!b";
IS_AD, "IS^AD", desc="idle, issued GETS, have not seen GETS or data yet";
IM_AD, "IM^AD", desc="idle, issued GETX, have not seen GETX or data yet";
SM_AD, "SM^AD",desc="shared, issued GETX, have not seen GETX or data yet";
OM_A, "OM^A",desc="owned, issued GETX, have not seen GETX yet", format="!b";
IS_A, "IS^A",desc="idle, issued GETS, have not seen GETS, have seen data";
IM_A, "IM^A",desc="idle, issued GETX, have not seen GETX, have seen data";
SM_A, "SM^A",desc="shared, issued GETX, have not seen GETX, have seen data", format="!b";
MI_A, "MI^A", desc="modified, issued PUTX, have not seen PUTX yet";
OI_A, "OI^A", desc="owned, issued PUTX, have not seen PUTX yet";
II_A, "II^A", desc="modified, issued PUTX, have not seen PUTX, then saw other GETX", format="!b";
IS_D, "IS^D", desc="idle, issued GETS, have seen GETS, have not seen data yet";
IS_D_I, "IS^D^I", desc="idle, issued GETS, have seen GETS, have not seen data, then saw other GETX";
IM_D, "IM^D", desc="idle, issued GETX, have seen GETX, have not seen data yet";
IM_D_O, "IM^D^O", desc="idle, issued GETX, have seen GETX, have not seen data yet, then saw other GETS";
IM_D_I, "IM^D^I", desc="idle, issued GETX, have seen GETX, have not seen data yet, then saw other GETX";
IM_D_OI, "IM^D^OI", desc="idle, issued GETX, have seen GETX, have not seen data yet, then saw other GETS, then saw other GETX";
SM_D, "SM^D", desc="shared, issued GETX, have seen GETX, have not seen data yet";
SM_D_O, "SM^D^O", desc="shared, issued GETX, have seen GETX, have not seen data yet, then saw other GETS";
}
// ** EVENTS **
enumeration(Event, desc="Cache events") {
// From processor
Load, desc="Load request from the processor";
Ifetch, desc="I-fetch request from the processor";
Store, desc="Store request from the processor";
Replacement, desc="Replacement";
Load_prefetch, desc="Read only prefetch";
Store_prefetch, desc="Read write prefetch", format="!r";
// From Address network
Own_GETS, desc="Occurs when we observe our own GETS request in the global order";
Own_GET_INSTR, desc="Occurs when we observe our own GETInstr request in the global order";
Own_GETX, desc="Occurs when we observe our own GETX request in the global order";
Own_PUTX, desc="Occurs when we observe our own PUTX request in the global order", format="!r";
Other_GETS, desc="Occurs when we observe a GETS request from another processor";
Other_GET_INSTR, desc="Occurs when we observe a GETInstr request from another processor";
Other_GETX, desc="Occurs when we observe a GETX request from another processor";
Other_PUTX, desc="Occurs when we observe a PUTX request from another processor", format="!r";
// From Data network
Data, desc="Data for this block from the data network";
}
// TYPES
// CacheEntry
structure(Entry, desc="...", interface="AbstractCacheEntry") {
State CacheState, desc="cache state";
DataBlock DataBlk, desc="data for the block";
}
// TBE fields
structure(TBE, desc="...") {
Address Address, desc="Physical address for this TBE";
State TBEState, desc="Transient state";
DataBlock DataBlk, desc="Buffer for the data block";
NetDest ForwardIDs, desc="IDs of the processors to forward the block";
Address ForwardAddress, desc="Address of request for forwarding";
bool isPrefetch, desc="Set if this request is a prefetch";
}
external_type(CacheMemory) {
bool cacheAvail(Address);
Address cacheProbe(Address);
void allocate(Address);
void deallocate(Address);
Entry lookup(Address);
void changePermission(Address, AccessPermission);
bool isTagPresent(Address);
}
external_type(TBETable) {
TBE lookup(Address);
void allocate(Address);
void deallocate(Address);
bool isPresent(Address);
}
MessageBuffer mandatoryQueue, ordered="false", abstract_chip_ptr="true";
MessageBuffer optionalQueue, ordered="true", abstract_chip_ptr="true";
Sequencer sequencer, abstract_chip_ptr="true", constructor_hack="i";
StoreBuffer storeBuffer, abstract_chip_ptr="true", constructor_hack="i";
TBETable TBEs, template_hack="<L1Cache_TBE>";
CacheMemory cacheMemory, template_hack="<L1Cache_Entry>", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_unified"', abstract_chip_ptr="true";
int cache_state_to_int(State state);
State getState(Address addr) {
if(TBEs.isPresent(addr)) {
return TBEs[addr].TBEState;
} else if (cacheMemory.isTagPresent(addr)) {
return cacheMemory[addr].CacheState;
}
return State:NP;
}
void setState(Address addr, State state) {
if (TBEs.isPresent(addr)) {
TBEs[addr].TBEState := state;
}
if (cacheMemory.isTagPresent(addr)) {
cacheMemory[addr].CacheState := state;
// Set permission
if ((state == State:I) || (state == State:MI_A) || (state == State:II_A)) {
cacheMemory.changePermission(addr, AccessPermission:Invalid);
} else if (state == State:S || state == State:O) {
cacheMemory.changePermission(addr, AccessPermission:Read_Only);
} else if (state == State:M) {
cacheMemory.changePermission(addr, AccessPermission:Read_Write);
} else {
cacheMemory.changePermission(addr, AccessPermission:Busy);
}
}
}
// ** OUT_PORTS **
out_port(dataNetwork_out, DataMsg, dataFromCache);
out_port(addressNetwork_out, AddressMsg, addressFromCache);
// ** IN_PORTS **
// Data Network
in_port(dataNetwork_in, DataMsg, dataToCache) {
if (dataNetwork_in.isReady()) {
peek(dataNetwork_in, DataMsg) {
trigger(Event:Data, in_msg.Address);
}
}
}
// Address Network
in_port(addressNetwork_in, AddressMsg, addressToCache) {
if (addressNetwork_in.isReady()) {
peek(addressNetwork_in, AddressMsg) {
if (in_msg.Type == CoherenceRequestType:GETS) {
if (in_msg.Requestor == machineID) {
trigger(Event:Own_GETS, in_msg.Address);
} else {
trigger(Event:Other_GETS, in_msg.Address);
}
} else if (in_msg.Type == CoherenceRequestType:GETX) {
if (in_msg.Requestor == machineID) {
trigger(Event:Own_GETX, in_msg.Address);
} else {
trigger(Event:Other_GETX, in_msg.Address);
}
} else if (in_msg.Type == CoherenceRequestType:GET_INSTR) {
if (in_msg.Requestor == machineID) {
trigger(Event:Own_GET_INSTR, in_msg.Address);
} else {
trigger(Event:Other_GET_INSTR, in_msg.Address);
}
} else if (in_msg.Type == CoherenceRequestType:PUTX) {
if (in_msg.Requestor == machineID) {
trigger(Event:Own_PUTX, in_msg.Address);
} else {
trigger(Event:Other_PUTX, in_msg.Address);
}
} else {
error("Unexpected message");
}
}
}
}
// Mandatory Queue
in_port(mandatoryQueue_in, CacheMsg, mandatoryQueue, desc="...") {
if (mandatoryQueue_in.isReady()) {
peek(mandatoryQueue_in, CacheMsg) {
if (cacheMemory.cacheAvail(in_msg.Address) == false) {
trigger(Event:Replacement, cacheMemory.cacheProbe(in_msg.Address));
} else {
if (in_msg.Type == CacheRequestType:LD) {
trigger(Event:Load, in_msg.Address);
} else if (in_msg.Type == CacheRequestType:IFETCH) {
trigger(Event:Ifetch, in_msg.Address);
} else if ((in_msg.Type == CacheRequestType:ST) || (in_msg.Type == CacheRequestType:ATOMIC)) {
trigger(Event:Store, in_msg.Address);
} else {
error("Invalid CacheRequestType");
}
}
}
}
}
// Optional Queue
in_port(optionalQueue_in, CacheMsg, optionalQueue, desc="...") {
if (optionalQueue_in.isReady()) {
peek(optionalQueue_in, CacheMsg) {
if (cacheMemory.cacheAvail(in_msg.Address) == false) {
trigger(Event:Replacement, cacheMemory.cacheProbe(in_msg.Address));
} else {
if ((in_msg.Type == CacheRequestType:LD) || (in_msg.Type == CacheRequestType:IFETCH)) {
trigger(Event:Load_prefetch, in_msg.Address);
} else if ((in_msg.Type == CacheRequestType:ST) || (in_msg.Type == CacheRequestType:ATOMIC)) {
trigger(Event:Store_prefetch, in_msg.Address);
} else {
error("Invalid CacheRequestType");
}
}
}
}
}
// ACTIONS
action(a_allocateTBE, "a", desc="Allocate TBE with Address=B, ForwardID=null, RetryCount=zero, ForwardIDRetryCount=zero, ForwardProgressBit=unset.") {
check_allocate(TBEs);
TBEs.allocate(address);
TBEs[address].isPrefetch := false;
TBEs[address].ForwardIDs.clear();
// Keep the TBE state consistent with the cache state
if (cacheMemory.isTagPresent(address)) {
TBEs[address].TBEState := cacheMemory[address].CacheState;
}
}
action(b_setPrefetchBit, "b", desc="Set prefetch bit in TBE.") {
TBEs[address].isPrefetch := true;
}
action(c_allocateCacheBlock, "c", desc="Set cache tag equal to tag of block B.") {
if (cacheMemory.isTagPresent(address) == false) {
cacheMemory.allocate(address);
}
}
action(d_deallocateTBE, "d", desc="Deallocate TBE.") {
TBEs.deallocate(address);
}
action(e_recordForwardingInfo, "e", desc="Record ID of other processor in ForwardID.") {
peek(addressNetwork_in, AddressMsg){
TBEs[address].ForwardIDs.add(in_msg.Requestor);
TBEs[address].ForwardAddress := in_msg.Address;
}
}
action(f_issueGETS, "f", desc="Issue GETS.") {
enqueue(addressNetwork_out, AddressMsg, latency="ISSUE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETS;
out_msg.CacheState := cache_state_to_int(getState(address));
out_msg.Requestor := machineID;
out_msg.Destination.broadcast(MachineType:L1Cache);
out_msg.Destination.add(map_Address_to_Directory(address)); // To memory
out_msg.MessageSize := MessageSizeType:Control;
}
}
action(g_issueGETX, "g", desc="Issue GETX.") {
enqueue(addressNetwork_out, AddressMsg, latency="ISSUE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETX;
out_msg.CacheState := cache_state_to_int(getState(address));
out_msg.Requestor := machineID;
out_msg.Destination.broadcast(MachineType:L1Cache);
out_msg.Destination.add(map_Address_to_Directory(address)); // To memory
out_msg.MessageSize := MessageSizeType:Control;
}
}
action(h_load_hit, "h", desc="If not prefetch, notify sequencer the load completed.") {
DEBUG_EXPR(cacheMemory[address].DataBlk);
if((TBEs.isPresent(address) == false) || (TBEs[address].isPrefetch == false)) {
// Non-prefetch
sequencer.readCallback(address, cacheMemory[address].DataBlk);
} else {
// Prefetch - don't call back
}
}
action(hh_store_hit, "\h", desc="If not prefetch, notify sequencer that store completed.") {
DEBUG_EXPR(cacheMemory[address].DataBlk);
if((TBEs.isPresent(address) == false) || (TBEs[address].isPrefetch == false)) {
// Non-prefetch
sequencer.writeCallback(address, cacheMemory[address].DataBlk);
} else {
// Prefetch - don't call back
}
}
action(i_popAddressQueue, "i", desc="Pop incoming address queue.") {
addressNetwork_in.dequeue();
}
action(j_popDataQueue, "j", desc="Pop incoming data queue.") {
dataNetwork_in.dequeue();
}
action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
mandatoryQueue_in.dequeue();
}
action(l_popOptionalQueue, "l", desc="Pop optional queue.") {
optionalQueue_in.dequeue();
}
action(o_cacheToForward, "o", desc="Send data from the cache to the processor indicated by ForwardIDs.") {
peek(dataNetwork_in, DataMsg){
// This has a CACHE_RESPONSE_LATENCY latency because we want to avoid the
// timing strangeness that can occur if requests that source the
// data from the TBE are faster than data sourced from the cache
enqueue(dataNetwork_out, DataMsg, latency="CACHE_RESPONSE_LATENCY"){
out_msg.Address := TBEs[address].ForwardAddress;
out_msg.Sender := machineID;
out_msg.DataBlk := cacheMemory[address].DataBlk;
out_msg.Destination := TBEs[address].ForwardIDs;
out_msg.DestMachine := MachineType:L1Cache;
out_msg.MessageSize := MessageSizeType:Data;
}
}
}
action(p_issuePUTX, "p", desc="Issue PUTX.") {
enqueue(addressNetwork_out, AddressMsg, latency="ISSUE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:PUTX;
out_msg.CacheState := cache_state_to_int(getState(address));
out_msg.Requestor := machineID;
out_msg.Destination.add(map_Address_to_Directory(address)); // To memory
out_msg.Destination.add(machineID); // Back to us
out_msg.DataBlk := cacheMemory[address].DataBlk;
out_msg.MessageSize := MessageSizeType:Data;
}
}
action(q_writeDataFromCacheToTBE, "q", desc="Write data from the cache into the TBE.") {
TBEs[address].DataBlk := cacheMemory[address].DataBlk;
DEBUG_EXPR(TBEs[address].DataBlk);
}
action(r_cacheToRequestor, "r", desc="Send data from the cache to the requestor") {
peek(addressNetwork_in, AddressMsg) {
enqueue(dataNetwork_out, DataMsg, latency="CACHE_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DestMachine := MachineType:L1Cache;
out_msg.DataBlk := cacheMemory[address].DataBlk;
out_msg.MessageSize := MessageSizeType:Data;
}
DEBUG_EXPR(cacheMemory[address].DataBlk);
}
}
action(s_saveDataInTBE, "s", desc="Save data in data field of TBE.") {
peek(dataNetwork_in, DataMsg) {
TBEs[address].DataBlk := in_msg.DataBlk;
DEBUG_EXPR(TBEs[address].DataBlk);
}
}
action(t_issueGET_INSTR, "t", desc="Issue GETInstr.") {
enqueue(addressNetwork_out, AddressMsg, latency="ISSUE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GET_INSTR;
out_msg.CacheState := cache_state_to_int(getState(address));
out_msg.Requestor := machineID;
out_msg.Destination.broadcast(MachineType:L1Cache);
out_msg.Destination.add(map_Address_to_Directory(address)); // To memory
out_msg.MessageSize := MessageSizeType:Control;
}
}
action(w_writeDataFromTBEToCache, "w", desc="Write data from the TBE into the cache.") {
cacheMemory[address].DataBlk := TBEs[address].DataBlk;
DEBUG_EXPR(cacheMemory[address].DataBlk);
}
action(y_tbeToReq, "y", desc="Send data from the TBE to the requestor.") {
peek(addressNetwork_in, AddressMsg) {
enqueue(dataNetwork_out, DataMsg, latency="CACHE_RESPONSE_LATENCY") { // Either this or the PutX should have a real latency
out_msg.Address := address;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DestMachine := MachineType:L1Cache;
out_msg.DataBlk := TBEs[address].DataBlk;
out_msg.MessageSize := MessageSizeType:Data;
}
}
}
action(ff_deallocateCacheBlock, "\f", desc="Deallocate cache block. Sets the cache to invalid, allowing a replacement in parallel with a fetch.") {
cacheMemory.deallocate(address);
}
action(z_stall, "z", desc="Cannot be handled right now.") {
// Special name recognized as do nothing case
}
// TRANSITIONS
// Transitions from Idle
transition({NP, I}, Load, IS_AD) {
f_issueGETS;
c_allocateCacheBlock;
a_allocateTBE;
k_popMandatoryQueue;
}
transition({NP, I}, Ifetch, IS_AD) {
t_issueGET_INSTR;
c_allocateCacheBlock;
a_allocateTBE;
k_popMandatoryQueue;
}
transition({NP, I}, Load_prefetch, IS_AD) {
f_issueGETS;
c_allocateCacheBlock;
a_allocateTBE;
b_setPrefetchBit;
l_popOptionalQueue;
}
transition({NP, I}, Store, IM_AD) {
g_issueGETX;
c_allocateCacheBlock;
a_allocateTBE;
k_popMandatoryQueue;
}
transition({NP, I}, Store_prefetch, IM_AD) {
g_issueGETX;
c_allocateCacheBlock;
a_allocateTBE;
b_setPrefetchBit;
l_popOptionalQueue;
}
transition(I, Replacement) {
ff_deallocateCacheBlock; // the cache line is now in NotPresent
}
transition({NP, I}, { Other_GETS, Other_GET_INSTR, Other_GETX } ) {
i_popAddressQueue;
}
// Transitions from Shared
transition(S, {Load,Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(S, Load_prefetch) {
l_popOptionalQueue;
}
transition(S, Store, SM_AD) {
g_issueGETX;
a_allocateTBE;
k_popMandatoryQueue;
}
transition(S, Store_prefetch, IM_AD) {
g_issueGETX;
a_allocateTBE;
b_setPrefetchBit; // Must be after allocate TBE
l_popOptionalQueue;
}
transition(S, Replacement, I) {
ff_deallocateCacheBlock; // the cache line is now in NotPresent
}
transition(S, {Other_GETS, Other_GET_INSTR}) {
i_popAddressQueue;
}
transition(S, Other_GETX, I) {
i_popAddressQueue;
}
// Transitions from Owned
transition(O, {Load,Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(O, Store, OM_A){
g_issueGETX;
a_allocateTBE;
k_popMandatoryQueue;
}
transition(O, Load_prefetch) {
l_popOptionalQueue;
}
transition(O, Store_prefetch, OM_A) {
g_issueGETX;
a_allocateTBE;
b_setPrefetchBit;
l_popOptionalQueue;
}
transition(O, Replacement, OI_A) {
p_issuePUTX;
a_allocateTBE;
q_writeDataFromCacheToTBE;// the cache line is now empty
ff_deallocateCacheBlock; // the cache line is now in NotPresent
}
transition(O, {Other_GETS,Other_GET_INSTR}) {
r_cacheToRequestor;
i_popAddressQueue;
}
transition(O, Other_GETX, I) {
r_cacheToRequestor;
i_popAddressQueue;
}
// Transitions from Modified
transition(M, {Load,Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(M, Store) {
hh_store_hit;
k_popMandatoryQueue;
}
transition(M, {Load_prefetch,Store_prefetch}) {
l_popOptionalQueue;
}
transition(M, Replacement, MI_A) {
p_issuePUTX;
a_allocateTBE;
q_writeDataFromCacheToTBE;// the cache line is now empty
ff_deallocateCacheBlock; // the cache line is now in NotPresent
}
transition(M, {Other_GETS,Other_GET_INSTR}, O) {
r_cacheToRequestor;
i_popAddressQueue;
}
transition(M, Other_GETX, I) {
r_cacheToRequestor;
i_popAddressQueue;
}
// Transitions for Load/Store/Replacement from transient states
transition({IS_AD, IM_AD, IS_A, IM_A, SM_AD, OM_A, SM_A, IS_D, IS_D_I, IM_D, IM_D_O, IM_D_I, IM_D_OI, SM_D, SM_D_O}, {Load, Ifetch, Store, Replacement}) {
z_stall;
}
transition({IS_AD, IM_AD, IS_A, IM_A, SM_AD, OM_A, SM_A, IS_D, IM_D, IM_D_O, SM_D, SM_D_O}, Load_prefetch) {
l_popOptionalQueue;
}
transition({IS_D_I, IM_D_I, IM_D_OI}, Load_prefetch) {
z_stall;
}
transition({IM_AD, SM_AD, OM_A, IM_A, SM_A, IM_D, SM_D}, Store_prefetch) {
l_popOptionalQueue;
}
transition({IS_AD, IS_A, IS_D, IS_D_I, IM_D_O, IM_D_I, IM_D_OI, SM_D_O}, Store_prefetch) {
z_stall;
}
transition({MI_A, OI_A, II_A}, {Load, Ifetch, Store, Load_prefetch, Store_prefetch, Replacement}) {
z_stall;
}
// Always ignore PUTXs which we are not the owner of
transition({NP, I, S, O, M, IS_AD, IM_AD, SM_AD, OM_A, IS_A, IM_A, SM_A, MI_A, OI_A, II_A, IS_D, IS_D_I, IM_D, IM_D_O, IM_D_I, IM_D_OI, SM_D, SM_D_O }, Other_PUTX) {
i_popAddressQueue;
}
// transitions from IS_AD
transition(IS_AD, {Own_GETS,Own_GET_INSTR}, IS_D) {
i_popAddressQueue;
}
transition(IS_AD, {Other_GETS, Other_GET_INSTR, Other_GETX}) {
i_popAddressQueue;
}
transition(IS_AD, Data, IS_A) {
s_saveDataInTBE;
j_popDataQueue;
}
// Transitions from IM_AD
transition(IM_AD, Own_GETX, IM_D) {
i_popAddressQueue;
}
transition(IM_AD, {Other_GETS, Other_GET_INSTR, Other_GETX}) {
i_popAddressQueue;
}
transition(IM_AD, Data, IM_A) {
s_saveDataInTBE;
j_popDataQueue;
}
// Transitions from OM_A
transition(OM_A, Own_GETX, M){
hh_store_hit;
d_deallocateTBE;
i_popAddressQueue;
}
transition(OM_A, {Other_GETS, Other_GET_INSTR}){
r_cacheToRequestor;
i_popAddressQueue;
}
transition(OM_A, Other_GETX, IM_AD){
r_cacheToRequestor;
i_popAddressQueue;
}
transition(OM_A, Data, IM_A) { // if we get data, we know we're going to lose block before we see own GETX
s_saveDataInTBE;
j_popDataQueue;
}
// Transitions from SM_AD
transition(SM_AD, Own_GETX, SM_D) {
i_popAddressQueue;
}
transition(SM_AD, {Other_GETS,Other_GET_INSTR}) {
i_popAddressQueue;
}
transition(SM_AD, Other_GETX, IM_AD) {
i_popAddressQueue;
}
transition(SM_AD, Data, SM_A) {
s_saveDataInTBE;
j_popDataQueue;
}
// Transitions from IS_A
transition(IS_A, {Own_GETS,Own_GET_INSTR}, S) {
w_writeDataFromTBEToCache;
h_load_hit;
d_deallocateTBE;
i_popAddressQueue;
}
transition(IS_A, {Other_GETS, Other_GET_INSTR, Other_GETX}) {
i_popAddressQueue;
}
// Transitions from IM_A
transition(IM_A, Own_GETX, M) {
w_writeDataFromTBEToCache;
hh_store_hit;
d_deallocateTBE;
i_popAddressQueue;
}
transition(IM_A, {Other_GETS, Other_GET_INSTR, Other_GETX}) {
i_popAddressQueue;
}
// Transitions from SM_A
transition(SM_A, Own_GETX, M) {
w_writeDataFromTBEToCache;
hh_store_hit;
d_deallocateTBE;
i_popAddressQueue;
}
transition(SM_A, {Other_GETS,Other_GET_INSTR}) {
i_popAddressQueue;
}
transition(SM_A, Other_GETX, IM_A) {
i_popAddressQueue;
}
// Transitions from MI_A
transition(MI_A, Own_PUTX, I) {
d_deallocateTBE;
i_popAddressQueue;
}
transition(MI_A, {Other_GETS, Other_GET_INSTR}) {
y_tbeToReq;
i_popAddressQueue;
}
transition(MI_A, Other_GETX, II_A) {
y_tbeToReq;
i_popAddressQueue;
}
// Transitions from OI_A
transition(OI_A, Own_PUTX, I) {
d_deallocateTBE;
i_popAddressQueue;
}
transition(OI_A, {Other_GETS, Other_GET_INSTR}) {
y_tbeToReq;
i_popAddressQueue;
}
transition(OI_A, Other_GETX, II_A) {
y_tbeToReq;
i_popAddressQueue;
}
// Transitions from II_A
transition(II_A, Own_PUTX, I) {
d_deallocateTBE;
i_popAddressQueue;
}
transition(II_A, {Other_GETS, Other_GET_INSTR, Other_GETX}) {
i_popAddressQueue;
}
// Transitions from IS_D, IS_D_I
transition({IS_D, IS_D_I}, {Other_GETS,Other_GET_INSTR}) {
i_popAddressQueue;
}
transition(IS_D, Other_GETX, IS_D_I) {
i_popAddressQueue;
}
transition(IS_D_I, Other_GETX) {
i_popAddressQueue;
}
transition(IS_D, Data, S) {
s_saveDataInTBE;
w_writeDataFromTBEToCache;
h_load_hit;
d_deallocateTBE;
j_popDataQueue;
}
transition(IS_D_I, Data, I) {
s_saveDataInTBE;
w_writeDataFromTBEToCache;
h_load_hit;
d_deallocateTBE;
j_popDataQueue;
}
// Transitions from IM_D, IM_D_O, IM_D_I, IM_D_OI
transition( IM_D, {Other_GETS,Other_GET_INSTR}, IM_D_O ) {
e_recordForwardingInfo;
i_popAddressQueue;
}
transition( IM_D, Other_GETX, IM_D_I ) {
e_recordForwardingInfo;
i_popAddressQueue;
}
transition(IM_D_O, {Other_GETS,Other_GET_INSTR} ) {
e_recordForwardingInfo;
i_popAddressQueue;
}
transition(IM_D_O, Other_GETX, IM_D_OI) {
e_recordForwardingInfo;
i_popAddressQueue;
}
transition( {IM_D_I, IM_D_OI}, {Other_GETS, Other_GET_INSTR, Other_GETX} ) {
i_popAddressQueue;
}
transition(IM_D, Data, M) {
s_saveDataInTBE;
w_writeDataFromTBEToCache;
hh_store_hit;
d_deallocateTBE;
j_popDataQueue;
}
transition(IM_D_O, Data, O) {
s_saveDataInTBE;
w_writeDataFromTBEToCache;
hh_store_hit;
o_cacheToForward;
d_deallocateTBE;
j_popDataQueue;
}
transition(IM_D_I, Data, I) {
s_saveDataInTBE;
w_writeDataFromTBEToCache;
hh_store_hit;
o_cacheToForward;
d_deallocateTBE;
j_popDataQueue;
}
transition(IM_D_OI, Data, I) {
s_saveDataInTBE;
w_writeDataFromTBEToCache;
hh_store_hit;
o_cacheToForward;
d_deallocateTBE;
j_popDataQueue;
}
// Transitions for SM_D, SM_D_O
transition(SM_D, {Other_GETS,Other_GET_INSTR}, SM_D_O) {
e_recordForwardingInfo;
i_popAddressQueue;
}
transition(SM_D, Other_GETX, IM_D_I) {
e_recordForwardingInfo;
i_popAddressQueue;
}
transition(SM_D_O, {Other_GETS,Other_GET_INSTR}) {
e_recordForwardingInfo;
i_popAddressQueue;
}
transition(SM_D_O, Other_GETX, IM_D_OI) {
e_recordForwardingInfo;
i_popAddressQueue;
}
transition(SM_D, Data, M) {
s_saveDataInTBE;
w_writeDataFromTBEToCache;
hh_store_hit;
d_deallocateTBE;
j_popDataQueue;
}
transition(SM_D_O, Data, O) {
s_saveDataInTBE;
w_writeDataFromTBEToCache;
hh_store_hit;
o_cacheToForward;
d_deallocateTBE;
j_popDataQueue;
}
}