gem5/cpu/simple/cpu.hh
Ali Saidi c27c122afc Add the bus and connector objects to scons
change getPort parameter from char* to string
Add an extra phase between construction and init called connect

SConscript:
    Add the bus and connector objects to scons
cpu/simple/cpu.cc:
cpu/simple/cpu.hh:
    the connection to memory shouldn't be made until we know the memory
    object exists (e.g. after construction)
dev/io_device.hh:
    change to const string
mem/bus.hh:
    change getPort parameter from char* to string
    initialize num_interfaces
mem/mem_object.hh:
    change getPort parameter from char* to string
mem/physical.cc:
mem/physical.hh:
    change getPort parameter from char* to string
    get rid of the bus object I created last time
python/m5/objects/PhysicalMemory.py:
    get rid of the bus object I created last time
sim/main.cc:
sim/sim_object.cc:
sim/sim_object.hh:
    Add an extra phase between construction and init called connect

--HG--
extra : convert_revision : 0e994f93374fa72a06d291655c440ff1b8e155a9
2006-03-26 21:44:22 -05:00

425 lines
12 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
#define __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
#include "base/statistics.hh"
#include "config/full_system.hh"
#include "cpu/base.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/pc_event.hh"
#include "cpu/sampler/sampler.hh"
#include "cpu/static_inst.hh"
#include "mem/packet.hh"
#include "mem/port.hh"
#include "mem/request.hh"
#include "sim/eventq.hh"
// forward declarations
#if FULL_SYSTEM
class Processor;
class AlphaITB;
class AlphaDTB;
class MemObject;
class RemoteGDB;
class GDBListener;
#else
class Process;
#endif // FULL_SYSTEM
class ExecContext;
class Checkpoint;
namespace Trace {
class InstRecord;
}
// Set exactly one of these symbols to 1 to set the memory access
// model. Probably should make these template parameters, or even
// just fork the CPU models.
//
#define SIMPLE_CPU_MEM_TIMING 0
#define SIMPLE_CPU_MEM_ATOMIC 0
#define SIMPLE_CPU_MEM_IMMEDIATE 1
class SimpleCPU : public BaseCPU
{
protected:
typedef TheISA::MachInst MachInst;
typedef TheISA::MiscReg MiscReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
class CpuPort : public Port
{
SimpleCPU *cpu;
public:
CpuPort(SimpleCPU *_cpu)
: cpu(_cpu)
{ }
protected:
virtual bool recvTiming(Packet &pkt);
virtual Tick recvAtomic(Packet &pkt);
virtual void recvFunctional(Packet &pkt);
virtual void recvStatusChange(Status status);
virtual Packet *recvRetry();
};
MemObject *mem;
CpuPort icachePort;
CpuPort dcachePort;
public:
// main simulation loop (one cycle)
void tick();
virtual void init();
private:
struct TickEvent : public Event
{
SimpleCPU *cpu;
int width;
TickEvent(SimpleCPU *c, int w);
void process();
const char *description();
};
TickEvent tickEvent;
/// Schedule tick event, regardless of its current state.
void scheduleTickEvent(int numCycles)
{
if (tickEvent.squashed())
tickEvent.reschedule(curTick + cycles(numCycles));
else if (!tickEvent.scheduled())
tickEvent.schedule(curTick + cycles(numCycles));
}
/// Unschedule tick event, regardless of its current state.
void unscheduleTickEvent()
{
if (tickEvent.scheduled())
tickEvent.squash();
}
private:
Trace::InstRecord *traceData;
public:
//
enum Status {
Running,
Idle,
IcacheRetry,
IcacheWaitResponse,
IcacheAccessComplete,
DcacheRetry,
DcacheWaitResponse,
DcacheWaitSwitch,
SwitchedOut
};
private:
Status _status;
public:
void post_interrupt(int int_num, int index);
void zero_fill_64(Addr addr) {
static int warned = 0;
if (!warned) {
warn ("WH64 is not implemented");
warned = 1;
}
};
public:
struct Params : public BaseCPU::Params
{
int width;
#if FULL_SYSTEM
AlphaITB *itb;
AlphaDTB *dtb;
#else
MemObject *mem;
Process *process;
#endif
};
SimpleCPU(Params *params);
virtual ~SimpleCPU();
public:
// execution context
CPUExecContext *cpuXC;
ExecContext *xcProxy;
void switchOut(Sampler *s);
void takeOverFrom(BaseCPU *oldCPU);
#if FULL_SYSTEM
Addr dbg_vtophys(Addr addr);
bool interval_stats;
#endif
// current instruction
MachInst inst;
#if SIMPLE_CPU_MEM_TIMING
Packet *retry_pkt;
#elif SIMPLE_CPU_MEM_ATOMIC || SIMPLE_CPU_MEM_IMMEDIATE
CpuRequest *ifetch_req;
Packet *ifetch_pkt;
CpuRequest *data_read_req;
Packet *data_read_pkt;
CpuRequest *data_write_req;
Packet *data_write_pkt;
#endif
// Pointer to the sampler that is telling us to switchover.
// Used to signal the completion of the pipe drain and schedule
// the next switchover
Sampler *sampler;
StaticInstPtr curStaticInst;
Status status() const { return _status; }
virtual void activateContext(int thread_num, int delay);
virtual void suspendContext(int thread_num);
virtual void deallocateContext(int thread_num);
virtual void haltContext(int thread_num);
// statistics
virtual void regStats();
virtual void resetStats();
// number of simulated instructions
Counter numInst;
Counter startNumInst;
Stats::Scalar<> numInsts;
virtual Counter totalInstructions() const
{
return numInst - startNumInst;
}
// number of simulated memory references
Stats::Scalar<> numMemRefs;
// number of simulated loads
Counter numLoad;
Counter startNumLoad;
// number of idle cycles
Stats::Average<> notIdleFraction;
Stats::Formula idleFraction;
// number of cycles stalled for I-cache responses
Stats::Scalar<> icacheStallCycles;
Counter lastIcacheStall;
// number of cycles stalled for I-cache retries
Stats::Scalar<> icacheRetryCycles;
Counter lastIcacheRetry;
// number of cycles stalled for D-cache responses
Stats::Scalar<> dcacheStallCycles;
Counter lastDcacheStall;
// number of cycles stalled for D-cache retries
Stats::Scalar<> dcacheRetryCycles;
Counter lastDcacheRetry;
void sendIcacheRequest(Packet *pkt);
void sendDcacheRequest(Packet *pkt);
void processResponse(Packet &response);
Packet * processRetry();
void recvStatusChange(Port::Status status) {}
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
template <class T>
Fault read(Addr addr, T &data, unsigned flags);
template <class T>
Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
// These functions are only used in CPU models that split
// effective address computation from the actual memory access.
void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
Addr getEA() { panic("SimpleCPU::getEA() not implemented\n"); }
void prefetch(Addr addr, unsigned flags)
{
// need to do this...
}
void writeHint(Addr addr, int size, unsigned flags)
{
// need to do this...
}
Fault copySrcTranslate(Addr src);
Fault copy(Addr dest);
// The register accessor methods provide the index of the
// instruction's operand (e.g., 0 or 1), not the architectural
// register index, to simplify the implementation of register
// renaming. We find the architectural register index by indexing
// into the instruction's own operand index table. Note that a
// raw pointer to the StaticInst is provided instead of a
// ref-counted StaticInstPtr to redice overhead. This is fine as
// long as these methods don't copy the pointer into any long-term
// storage (which is pretty hard to imagine they would have reason
// to do).
uint64_t readIntReg(const StaticInst *si, int idx)
{
return cpuXC->readIntReg(si->srcRegIdx(idx));
}
FloatReg readFloatReg(const StaticInst *si, int idx, int width)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return cpuXC->readFloatReg(reg_idx, width);
}
FloatReg readFloatReg(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return cpuXC->readFloatReg(reg_idx);
}
FloatRegBits readFloatRegBits(const StaticInst *si, int idx, int width)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return cpuXC->readFloatRegBits(reg_idx, width);
}
FloatRegBits readFloatRegBits(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return cpuXC->readFloatRegBits(reg_idx);
}
void setIntReg(const StaticInst *si, int idx, uint64_t val)
{
cpuXC->setIntReg(si->destRegIdx(idx), val);
}
void setFloatReg(const StaticInst *si, int idx, FloatReg val, int width)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
cpuXC->setFloatReg(reg_idx, val, width);
}
void setFloatReg(const StaticInst *si, int idx, FloatReg val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
cpuXC->setFloatReg(reg_idx, val);
}
void setFloatRegBits(const StaticInst *si, int idx,
FloatRegBits val, int width)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
cpuXC->setFloatRegBits(reg_idx, val, width);
}
void setFloatRegBits(const StaticInst *si, int idx, FloatRegBits val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
cpuXC->setFloatRegBits(reg_idx, val);
}
uint64_t readPC() { return cpuXC->readPC(); }
uint64_t readNextPC() { return cpuXC->readNextPC(); }
uint64_t readNextNPC() { return cpuXC->readNextNPC(); }
void setPC(uint64_t val) { cpuXC->setPC(val); }
void setNextPC(uint64_t val) { cpuXC->setNextPC(val); }
void setNextNPC(uint64_t val) { cpuXC->setNextNPC(val); }
MiscReg readMiscReg(int misc_reg)
{
return cpuXC->readMiscReg(misc_reg);
}
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
{
return cpuXC->readMiscRegWithEffect(misc_reg, fault);
}
Fault setMiscReg(int misc_reg, const MiscReg &val)
{
return cpuXC->setMiscReg(misc_reg, val);
}
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val)
{
return cpuXC->setMiscRegWithEffect(misc_reg, val);
}
#if FULL_SYSTEM
Fault hwrei() { return cpuXC->hwrei(); }
int readIntrFlag() { return cpuXC->readIntrFlag(); }
void setIntrFlag(int val) { cpuXC->setIntrFlag(val); }
bool inPalMode() { return cpuXC->inPalMode(); }
void ev5_trap(Fault fault) { fault->invoke(xcProxy); }
bool simPalCheck(int palFunc) { return cpuXC->simPalCheck(palFunc); }
#else
void syscall() { cpuXC->syscall(); }
#endif
bool misspeculating() { return cpuXC->misspeculating(); }
ExecContext *xcBase() { return xcProxy; }
};
#endif // __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__