cb0cf2dd8a
--HG-- extra : convert_revision : 77f475b156d81c03a2811818fa23593d5615c685
155 lines
5.3 KiB
Python
155 lines
5.3 KiB
Python
# Copyright (c) 2003-2004 The Regents of The University of Michigan
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are
|
|
# met: redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer;
|
|
# redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution;
|
|
# neither the name of the copyright holders nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
# Authors: Nathan Binkert
|
|
|
|
all = False
|
|
descriptions = False
|
|
|
|
class Value:
|
|
def __init__(self, value, precision, percent = False):
|
|
self.value = value
|
|
self.precision = precision
|
|
self.percent = percent
|
|
def __str__(self):
|
|
if isinstance(self.value, str):
|
|
if self.value.lower() == 'nan':
|
|
value = 'NaN'
|
|
if self.value.lower() == 'inf':
|
|
value = 'Inf'
|
|
else:
|
|
if self.precision >= 0:
|
|
format = "%%.%df" % self.precision
|
|
elif self.value == 0.0:
|
|
format = "%.0f"
|
|
elif self.value % 1.0 == 0.0:
|
|
format = "%.0f"
|
|
else:
|
|
format = "%f"
|
|
value = self.value
|
|
if self.percent:
|
|
value = value * 100.0
|
|
value = format % value
|
|
|
|
if self.percent:
|
|
value = value + "%"
|
|
|
|
return value
|
|
|
|
class Print:
|
|
def __init__(self, **vals):
|
|
self.__dict__.update(vals)
|
|
|
|
def __str__(self):
|
|
value = Value(self.value, self.precision)
|
|
pdf = ''
|
|
cdf = ''
|
|
if self.__dict__.has_key('pdf'):
|
|
pdf = Value(self.pdf, 2, True)
|
|
if self.__dict__.has_key('cdf'):
|
|
cdf = Value(self.cdf, 2, True)
|
|
|
|
output = "%-40s %12s %8s %8s" % (self.name, value, pdf, cdf)
|
|
|
|
if descriptions and self.__dict__.has_key('desc') and self.desc:
|
|
output = "%s # %s" % (output, self.desc)
|
|
|
|
return output
|
|
|
|
def doprint(self):
|
|
if display_all:
|
|
return True
|
|
if self.value == 0.0 and (self.flags & flags_nozero):
|
|
return False
|
|
if isinstance(self.value, str):
|
|
if self.value == 'NaN' and (self.flags & flags_nonan):
|
|
return False
|
|
return True
|
|
|
|
def display(self):
|
|
if self.doprint():
|
|
print self
|
|
|
|
class VectorDisplay:
|
|
def display(self):
|
|
p = Print()
|
|
p.flags = self.flags
|
|
p.precision = self.precision
|
|
|
|
if isinstance(self.value, (list, tuple)):
|
|
if not len(self.value):
|
|
return
|
|
|
|
mytotal = reduce(lambda x,y: float(x) + float(y), self.value)
|
|
mycdf = 0.0
|
|
|
|
value = self.value
|
|
|
|
if display_all:
|
|
subnames = [ '[%d]' % i for i in range(len(value)) ]
|
|
else:
|
|
subnames = [''] * len(value)
|
|
|
|
if self.__dict__.has_key('subnames'):
|
|
for i,each in enumerate(self.subnames):
|
|
if len(each) > 0:
|
|
subnames[i] = '.%s' % each
|
|
|
|
subdescs = [self.desc]*len(value)
|
|
if self.__dict__.has_key('subdescs'):
|
|
for i in xrange(min(len(value), len(self.subdescs))):
|
|
subdescs[i] = self.subdescs[i]
|
|
|
|
for val,sname,sdesc in map(None, value, subnames, subdescs):
|
|
if mytotal > 0.0:
|
|
mypdf = float(val) / float(mytotal)
|
|
mycdf += mypdf
|
|
if (self.flags & flags_pdf):
|
|
p.pdf = mypdf
|
|
p.cdf = mycdf
|
|
|
|
if len(sname) == 0:
|
|
continue
|
|
|
|
p.name = self.name + sname
|
|
p.desc = sdesc
|
|
p.value = val
|
|
p.display()
|
|
|
|
if (self.flags & flags_total):
|
|
if (p.__dict__.has_key('pdf')): del p.__dict__['pdf']
|
|
if (p.__dict__.has_key('cdf')): del p.__dict__['cdf']
|
|
p.name = self.name + '.total'
|
|
p.desc = self.desc
|
|
p.value = mytotal
|
|
p.display()
|
|
|
|
else:
|
|
p.name = self.name
|
|
p.desc = self.desc
|
|
p.value = self.value
|
|
p.display()
|
|
|