gem5/util/minorview/blobs.py
Andrew Bardsley 0e8a90f06b cpu: `Minor' in-order CPU model
This patch contains a new CPU model named `Minor'. Minor models a four
stage in-order execution pipeline (fetch lines, decompose into
macroops, decompose macroops into microops, execute).

The model was developed to support the ARM ISA but should be fixable
to support all the remaining gem5 ISAs. It currently also works for
Alpha, and regressions are included for ARM and Alpha (including Linux
boot).

Documentation for the model can be found in src/doc/inside-minor.doxygen and
its internal operations can be visualised using the Minorview tool
utils/minorview.py.

Minor was designed to be fairly simple and not to engage in a lot of
instruction annotation. As such, it currently has very few gathered
stats and may lack other gem5 features.

Minor is faster than the o3 model. Sample results:

     Benchmark     |   Stat host_seconds (s)
    ---------------+--------v--------v--------
     (on ARM, opt) | simple | o3     | minor
                   | timing | timing | timing
    ---------------+--------+--------+--------
    10.linux-boot  |   169  |  1883  |  1075
    10.mcf         |   117  |   967  |   491
    20.parser      |   668  |  6315  |  3146
    30.eon         |   542  |  3413  |  2414
    40.perlbmk     |  2339  | 20905  | 11532
    50.vortex      |   122  |  1094  |   588
    60.bzip2       |  2045  | 18061  |  9662
    70.twolf       |   207  |  2736  |  1036
2014-07-23 16:09:04 -05:00

461 lines
17 KiB
Python

# Copyright (c) 2013 ARM Limited
# All rights reserved
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Andrew Bardsley
#
# blobs.py: Blobs are the visual blocks, arrows and other coloured
# objects on the visualiser. This file contains Blob definition and
# their rendering instructions in pygtk/cairo.
#
import pygtk
pygtk.require('2.0')
import gtk
import gobject
import cairo
import re
import math
from point import Point
import parse
import colours
from colours import backgroundColour, black
import model
def centre_size_to_sides(centre, size):
"""Returns a 4-tuple of the relevant ordinates of the left,
right, top and bottom sides of the described rectangle"""
(x, y) = centre.to_pair()
(half_width, half_height) = (size.scale(0.5)).to_pair()
left = x - half_width
right = x + half_width
top = y - half_height
bottom = y + half_height
return (left, right, top, bottom)
def box(cr, centre, size):
"""Draw a simple box"""
(left, right, top, bottom) = centre_size_to_sides(centre, size)
cr.move_to(left, top)
cr.line_to(right, top)
cr.line_to(right, bottom)
cr.line_to(left, bottom)
cr.close_path()
def stroke_and_fill(cr, colour):
"""Stroke with the current colour then fill the same path with the
given colour"""
join = cr.get_line_join()
cr.set_line_join(gtk.gdk.JOIN_ROUND)
cr.close_path()
cr.set_source_color(backgroundColour)
cr.stroke_preserve()
cr.set_source_color(colour)
cr.fill()
cr.set_line_join(join)
def striped_box(cr, centre, size, colours):
"""Fill a rectangle (without outline) striped with the colours given"""
num_colours = len(colours)
if num_colours == 0:
box(cr, centre, size)
cr.set_source_color(backgroundColour)
cr.fill()
elif num_colours == 1:
box(cr, centre, size)
stroke_and_fill(cr, colours[0])
else:
(left, right, top, bottom) = centre_size_to_sides(centre, size)
(width, height) = size.to_pair()
x_stripe_width = width / num_colours
half_x_stripe_width = x_stripe_width / 2.0
# Left triangle
cr.move_to(left, bottom)
cr.line_to(left + half_x_stripe_width, bottom)
cr.line_to(left + x_stripe_width + half_x_stripe_width, top)
cr.line_to(left, top)
stroke_and_fill(cr, colours[0])
# Stripes
for i in xrange(1, num_colours - 1):
xOffset = x_stripe_width * i
cr.move_to(left + xOffset - half_x_stripe_width, bottom)
cr.line_to(left + xOffset + half_x_stripe_width, bottom)
cr.line_to(left + xOffset + x_stripe_width +
half_x_stripe_width, top)
cr.line_to(left + xOffset + x_stripe_width -
half_x_stripe_width, top)
stroke_and_fill(cr, colours[i])
# Right triangle
cr.move_to((right - x_stripe_width) - half_x_stripe_width, bottom)
cr.line_to(right, bottom)
cr.line_to(right, top)
cr.line_to((right - x_stripe_width) + half_x_stripe_width, top)
stroke_and_fill(cr, colours[num_colours - 1])
def speech_bubble(cr, top_left, size, unit):
"""Draw a speech bubble with 'size'-sized internal space with its
top left corner at Point(2.0 * unit, 2.0 * unit)"""
def local_arc(centre, angleFrom, angleTo):
cr.arc(centre.x, centre.y, unit, angleFrom * math.pi,
angleTo * math.pi)
cr.move_to(*top_left.to_pair())
cr.rel_line_to(unit * 2.0, unit)
cr.rel_line_to(size.x, 0.0)
local_arc(top_left + Point(size.x + unit * 2.0, unit * 2.0), -0.5, 0.0)
cr.rel_line_to(0.0, size.y)
local_arc(top_left + Point(size.x + unit * 2.0, size.y + unit * 2.0),
0, 0.5)
cr.rel_line_to(-size.x, 0.0)
local_arc(top_left + Point(unit * 2.0, size.y + unit * 2.0), 0.5, 1.0)
cr.rel_line_to(0, -size.y)
cr.close_path()
def open_bottom(cr, centre, size):
"""Draw a box with left, top and right sides"""
(left, right, top, bottom) = centre_size_to_sides(centre, size)
cr.move_to(left, bottom)
cr.line_to(left, top)
cr.line_to(right, top)
cr.line_to(right, bottom)
def fifo(cr, centre, size):
"""Draw just the vertical sides of a box"""
(left, right, top, bottom) = centre_size_to_sides(centre, size)
cr.move_to(left, bottom)
cr.line_to(left, top)
cr.move_to(right, bottom)
cr.line_to(right, top)
def cross(cr, centre, size):
"""Draw a cross parallel with the axes"""
(left, right, top, bottom) = centre_size_to_sides(centre, size)
(x, y) = centre.to_pair()
cr.move_to(left, y)
cr.line_to(right, y)
cr.move_to(x, top)
cr.line_to(x, bottom)
class Blob(object):
"""Blob super class"""
def __init__(self, picChar, unit, topLeft, colour, size = Point(1,1)):
self.picChar = picChar
self.unit = unit
self.displayName = unit
self.nameLoc = 'top'
self.topLeft = topLeft
self.colour = colour
self.size = size
self.border = 1.0
self.dataSelect = model.BlobDataSelect()
self.shorten = 0
def render(self, cr, view, event, select, time):
"""Render this blob with the given event's data. Returns either
None or a pair of (centre, size) in device coordinates for the drawn
blob. The return value can be used to detect if mouse clicks on
the canvas are within the blob"""
return None
class Block(Blob):
"""Blocks are rectangular blogs colourable with a 2D grid of striped
blocks. visualDecoder specifies how event data becomes this coloured
grid"""
def __init__(self, picChar, unit, topLeft=Point(0,0),
colour=colours.black,
size=Point(1,1)):
super(Block,self).__init__(picChar, unit, topLeft, colour,
size = size)
# {horiz, vert}
self.stripDir = 'horiz'
# {LR, RL}: LR means the first strip will be on the left/top,
# RL means the first strip will be on the right/bottom
self.stripOrd = 'LR'
# Number of blank strips if this is a frame
self.blankStrips = 0
# {box, fifo, openBottom}
self.shape = 'box'
self.visualDecoder = None
def render(self, cr, view, event, select, time):
# Find the right event, visuals and sizes for things
if event is None or self.displayName.startswith('_'):
event = model.BlobEvent(self.unit, time)
if self.picChar in event.visuals:
strips = event.visuals[self.picChar].to_striped_block(
select & self.dataSelect)
else:
strips = [[[colours.unknownColour]]]
if self.stripOrd == 'RL':
strips.reverse()
if len(strips) == 0:
strips = [[colours.errorColour]]
print 'Problem with the colour of event:', event
num_strips = len(strips)
strip_proportion = 1.0 / num_strips
first_strip_offset = (num_strips / 2.0) - 0.5
# Adjust blocks with 'shorten' attribute to the length of the data
size = Point(*self.size.to_pair())
if self.shorten != 0 and self.size.x > (num_strips * self.shorten):
size.x = num_strips * self.shorten
box_size = size - view.blobIndentFactor.scale(2)
# Now do cr sensitive things
cr.save()
cr.scale(*view.pitch.to_pair())
cr.translate(*self.topLeft.to_pair())
cr.translate(*(size - Point(1,1)).scale(0.5).to_pair())
translated_centre = Point(*cr.user_to_device(0.0, 0.0))
translated_size = \
Point(*cr.user_to_device_distance(*size.to_pair()))
# The 2D grid is a grid of strips of blocks. Data [[1,2],[3]]
# is 2 strips of 2 and 1 blocks respectively.
# if stripDir == 'horiz', strips are stacked vertically
# from top to bottom if stripOrd == 'LR' or bottom to top if
# stripOrd == 'RL'.
# if stripDir == 'vert', strips are stacked horizontally
# from left to right if stripOf == 'LR' or right to left if
# stripOrd == 'RL'.
strip_is_horiz = self.stripDir == 'horiz'
if strip_is_horiz:
strip_step_base = Point(1.0,0.0)
block_step_base = Point(0.0,1.0)
else:
strip_step_base = Point(0.0,1.0)
block_step_base = Point(1.0,0.0)
strip_size = (box_size * (strip_step_base.scale(strip_proportion) +
block_step_base))
strip_step = strip_size * strip_step_base
strip_centre = Point(0,0) - (strip_size *
strip_step_base.scale(first_strip_offset))
cr.set_line_width(view.midLineWidth / view.pitch.x)
# Draw the strips and their blocks
for strip_index in xrange(0, num_strips):
num_blocks = len(strips[strip_index])
block_proportion = 1.0 / num_blocks
firstBlockOffset = (num_blocks / 2.0) - 0.5
block_size = (strip_size *
(block_step_base.scale(block_proportion) +
strip_step_base))
block_step = block_size * block_step_base
block_centre = (strip_centre + strip_step.scale(strip_index) -
(block_size * block_step_base.scale(firstBlockOffset)))
for block_index in xrange(0, num_blocks):
striped_box(cr, block_centre +
block_step.scale(block_index), block_size,
strips[strip_index][block_index])
cr.set_font_size(0.7)
if self.border > 0.5:
weight = cairo.FONT_WEIGHT_BOLD
else:
weight = cairo.FONT_WEIGHT_NORMAL
cr.select_font_face('Helvetica', cairo.FONT_SLANT_NORMAL,
weight)
xb, yb, width, height, dx, dy = cr.text_extents(self.displayName)
text_comfort_space = 0.15
if self.nameLoc == 'left':
# Position text vertically along left side, top aligned
cr.save()
cr.rotate(- (math.pi / 2.0))
text_point = Point(size.y, size.x).scale(0.5) * Point(-1, -1)
text_point += Point(max(0, size.y - width), 0)
text_point += Point(-text_comfort_space, -text_comfort_space)
else: # Including top
# Position text above the top left hand corner
text_point = size.scale(0.5) * Point(-1,-1)
text_point += Point(0.00, -text_comfort_space)
if (self.displayName != '' and
not self.displayName.startswith('_')):
cr.set_source_color(self.colour)
cr.move_to(*text_point.to_pair())
cr.show_text(self.displayName)
if self.nameLoc == 'left':
cr.restore()
# Draw the outline shape
cr.save()
if strip_is_horiz:
cr.rotate(- (math.pi / 2.0))
box_size = Point(box_size.y, box_size.x)
if self.stripOrd == "RL":
cr.rotate(math.pi)
if self.shape == 'box':
box(cr, Point(0,0), box_size)
elif self.shape == 'openBottom':
open_bottom(cr, Point(0,0), box_size)
elif self.shape == 'fifo':
fifo(cr, Point(0,0), box_size)
cr.restore()
# Restore scale and stroke the outline
cr.restore()
cr.set_source_color(self.colour)
cr.set_line_width(view.thickLineWidth * self.border)
cr.stroke()
# Return blob size/position
if self.unit == '_':
return None
else:
return (translated_centre, translated_size)
class Key(Blob):
"""Draw a key to the special (and numeric colours) with swatches of the
colours half as wide as the key"""
def __init__(self, picChar, unit, topLeft, colour=colours.black,
size=Point(1,1)):
super(Key,self).__init__(picChar, unit, topLeft, colour, size = size)
self.colours = 'BBBB'
self.displayName = unit
def render(self, cr, view, event, select, time):
cr.save()
cr.scale(*view.pitch.to_pair())
cr.translate(*self.topLeft.to_pair())
# cr.translate(*(self.size - Point(1,1)).scale(0.5).to_pair())
half_width = self.size.x / 2.0
cr.translate(*(self.size - Point(1.0 + half_width,1.0)).scale(0.5).
to_pair())
num_colours = len(self.colours)
cr.set_line_width(view.midLineWidth / view.pitch.x)
blob_size = (Point(half_width,0.0) +
(self.size * Point(0.0,1.0 / num_colours)))
blob_step = Point(0.0,1.0) * blob_size
first_blob_centre = (Point(0.0,0.0) -
blob_step.scale((num_colours / 2.0) - 0.5))
cr.set_source_color(self.colour)
cr.set_line_width(view.thinLineWidth / view.pitch.x)
blob_proportion = 0.8
real_blob_size = blob_size.scale(blob_proportion)
cr.set_font_size(0.8 * blob_size.y * blob_proportion)
cr.select_font_face('Helvetica', cairo.FONT_SLANT_NORMAL,
cairo.FONT_WEIGHT_BOLD)
for i in xrange(0, num_colours):
centre = first_blob_centre + blob_step.scale(i)
box(cr, centre, real_blob_size)
colour_char = self.colours[i]
if colour_char.isdigit():
cr.set_source_color(colours.number_to_colour(
int(colour_char)))
label = '...' + colour_char
else:
cr.set_source_color(model.special_state_colours[colour_char])
label = model.special_state_names[colour_char]
cr.fill_preserve()
cr.set_source_color(self.colour)
cr.stroke()
xb, yb, width, height, dx, dy = cr.text_extents(label)
text_left = (centre + (Point(0.5,0.0) * blob_size) +
Point(0.0, height / 2.0))
cr.move_to(*text_left.to_pair())
cr.show_text(label)
class Arrow(Blob):
"""Draw a left or right facing arrow"""
def __init__(self, unit, topLeft, colour=colours.black,
size=Point(1.0,1.0), direc='right'):
super(Arrow,self).__init__(unit, unit, topLeft, colour, size = size)
self.direc = direc
def render(self, cr, view, event, select, time):
cr.save()
cr.scale(*view.pitch.to_pair())
cr.translate(*self.topLeft.to_pair())
cr.translate(*(self.size - Point(1,1)).scale(0.5).to_pair())
cr.scale(*self.size.to_pair())
(blob_indent_x, blob_indent_y) = \
(view.blobIndentFactor / self.size).to_pair()
left = -0.5 - blob_indent_x
right = 0.5 + blob_indent_x
thickness = 0.2
flare = 0.2
if self.direc == 'left':
cr.rotate(math.pi)
cr.move_to(left, -thickness)
cr.line_to(0.0, -thickness)
cr.line_to(0.0, -(thickness + flare))
cr.line_to(right, 0)
# Break arrow to prevent the point ruining the appearance of boxes
cr.move_to(right, 0)
cr.line_to(0.0, (thickness + flare))
cr.line_to(0.0, +thickness)
cr.line_to(left, +thickness)
cr.restore()
# Draw arrow a bit more lightly than the standard line width
cr.set_line_width(cr.get_line_width() * 0.75)
cr.set_source_color(self.colour)
cr.stroke()
return None