gem5/ext/mcpat/array.cc
Yasuko Eckert 0deef376d9 ext: McPAT interface changes and fixes
This patch includes software engineering changes and some generic bug fixes
Joel Hestness and Yasuko Eckert made to McPAT 0.8. There are still known
issues/concernts we did not have a chance to address in this patch.

High-level changes in this patch include:
 1) Making XML parsing modular and hierarchical:
   - Shift parsing responsibility into the components
   - Read XML in a (mostly) context-free recursive manner so that McPAT input
     files can contain arbitrary component hierarchies
 2) Making power, energy, and area calculations a hierarchical and recursive
    process
   - Components track their subcomponents and recursively call compute
     functions in stages
   - Make C++ object hierarchy reflect inheritance of classes of components
     with similar structures
   - Simplify computeArea() and computeEnergy() functions to eliminate
     successive calls to calculate separate TDP vs. runtime energy
   - Remove Processor component (now unnecessary) and introduce a more abstract
     System component
 3) Standardizing McPAT output across all components
   - Use a single, common data structure for storing and printing McPAT output
   - Recursively call print functions through component hierarchy
 4) For caches, allow splitting data array and tag array reads and writes for
    better accuracy
 5) Improving the usability of CACTI by printing more helpful warning and error
    messages
 6) Minor: Impose more rigorous code style for clarity (more work still to be
    done)
Overall, these changes greatly reduce the amount of replicated code, and they
improve McPAT runtime and decrease memory footprint.
2014-06-03 13:32:59 -07:00

312 lines
13 KiB
C++

/*****************************************************************************
* McPAT
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
***************************************************************************/
#include <iostream>
#include <math.h>
#include "area.h"
#include "array.h"
#include "common.h"
#include "decoder.h"
#include "parameter.h"
using namespace std;
double ArrayST::area_efficiency_threshold = 20.0;
int ArrayST::ed = 0;
//Fixed number, make sure timing can be satisfied.
int ArrayST::delay_wt = 100;
int ArrayST::cycle_time_wt = 1000;
//Fixed number, This is used to exhaustive search for individual components.
int ArrayST::area_wt = 10;
//Fixed number, This is used to exhaustive search for individual components.
int ArrayST::dynamic_power_wt = 10;
int ArrayST::leakage_power_wt = 10;
//Fixed number, make sure timing can be satisfied.
int ArrayST::delay_dev = 1000000;
int ArrayST::cycle_time_dev = 100;
//Fixed number, This is used to exhaustive search for individual components.
int ArrayST::area_dev = 1000000;
//Fixed number, This is used to exhaustive search for individual components.
int ArrayST::dynamic_power_dev = 1000000;
int ArrayST::leakage_power_dev = 1000000;
int ArrayST::cycle_time_dev_threshold = 10;
ArrayST::ArrayST(XMLNode* _xml_data,
const InputParameter *configure_interface, string _name,
enum Device_ty device_ty_, double _clockRate,
bool opt_local_, enum Core_type core_ty_, bool _is_default)
: McPATComponent(_xml_data), l_ip(*configure_interface),
device_ty(device_ty_), opt_local(opt_local_), core_ty(core_ty_),
is_default(_is_default) {
name = _name;
clockRate = _clockRate;
if (l_ip.cache_sz < MIN_BUFFER_SIZE)
l_ip.cache_sz = MIN_BUFFER_SIZE;
if (!l_ip.error_checking(name)) {
exit(1);
}
output_data.reset();
computeEnergy();
computeArea();
}
void ArrayST::compute_base_power() {
local_result = cacti_interface(&l_ip);
}
void ArrayST::computeArea() {
area.set_area(local_result.area);
output_data.area = local_result.area / 1e6;
}
void ArrayST::computeEnergy() {
list<uca_org_t > candidate_solutions(0);
list<uca_org_t >::iterator candidate_iter, min_dynamic_energy_iter;
uca_org_t* temp_res = NULL;
local_result.valid = false;
double throughput = l_ip.throughput;
double latency = l_ip.latency;
bool throughput_overflow = true;
bool latency_overflow = true;
compute_base_power();
if ((local_result.cycle_time - throughput) <= 1e-10 )
throughput_overflow = false;
if ((local_result.access_time - latency) <= 1e-10)
latency_overflow = false;
if (opt_for_clk && opt_local) {
if (throughput_overflow || latency_overflow) {
l_ip.ed = ed;
l_ip.delay_wt = delay_wt;
l_ip.cycle_time_wt = cycle_time_wt;
l_ip.area_wt = area_wt;
l_ip.dynamic_power_wt = dynamic_power_wt;
l_ip.leakage_power_wt = leakage_power_wt;
l_ip.delay_dev = delay_dev;
l_ip.cycle_time_dev = cycle_time_dev;
l_ip.area_dev = area_dev;
l_ip.dynamic_power_dev = dynamic_power_dev;
l_ip.leakage_power_dev = leakage_power_dev;
//Reset overflow flag before start optimization iterations
throughput_overflow = true;
latency_overflow = true;
//Clean up the result for optimized for ED^2P
temp_res = &local_result;
temp_res->cleanup();
}
while ((throughput_overflow || latency_overflow) &&
l_ip.cycle_time_dev > cycle_time_dev_threshold) {
compute_base_power();
//This is the time_dev to be used for next iteration
l_ip.cycle_time_dev -= cycle_time_dev_threshold;
// from best area to worst area -->worst timing to best timing
if ((((local_result.cycle_time - throughput) <= 1e-10 ) &&
(local_result.access_time - latency) <= 1e-10) ||
(local_result.data_array2->area_efficiency <
area_efficiency_threshold && l_ip.assoc == 0)) {
//if no satisfiable solution is found,the most aggressive one
//is left
candidate_solutions.push_back(local_result);
if (((local_result.cycle_time - throughput) <= 1e-10) &&
((local_result.access_time - latency) <= 1e-10)) {
//ensure stop opt not because of cam
throughput_overflow = false;
latency_overflow = false;
}
} else {
if ((local_result.cycle_time - throughput) <= 1e-10)
throughput_overflow = false;
if ((local_result.access_time - latency) <= 1e-10)
latency_overflow = false;
//if not >10 local_result is the last result, it cannot be
//cleaned up
if (l_ip.cycle_time_dev > cycle_time_dev_threshold) {
//Only solutions not saved in the list need to be
//cleaned up
temp_res = &local_result;
temp_res->cleanup();
}
}
}
if (l_ip.assoc > 0) {
//For array structures except CAM and FA, Give warning but still
//provide a result with best timing found
if (throughput_overflow == true)
cout << "Warning: " << name
<< " array structure cannot satisfy throughput constraint."
<< endl;
if (latency_overflow == true)
cout << "Warning: " << name
<< " array structure cannot satisfy latency constraint."
<< endl;
}
double min_dynamic_energy = BIGNUM;
if (candidate_solutions.empty() == false) {
local_result.valid = true;
for (candidate_iter = candidate_solutions.begin();
candidate_iter != candidate_solutions.end();
++candidate_iter) {
if (min_dynamic_energy >
(candidate_iter)->power.readOp.dynamic) {
min_dynamic_energy =
(candidate_iter)->power.readOp.dynamic;
min_dynamic_energy_iter = candidate_iter;
local_result = *(min_dynamic_energy_iter);
} else {
candidate_iter->cleanup() ;
}
}
}
candidate_solutions.clear();
}
double long_channel_device_reduction =
longer_channel_device_reduction(device_ty, core_ty);
double macro_layout_overhead = g_tp.macro_layout_overhead;
double chip_PR_overhead = g_tp.chip_layout_overhead;
double total_overhead = macro_layout_overhead * chip_PR_overhead;
local_result.area *= total_overhead;
//maintain constant power density
double pppm_t[4] = {total_overhead, 1, 1, total_overhead};
double sckRation = g_tp.sckt_co_eff;
local_result.power.readOp.dynamic *= sckRation;
local_result.power.writeOp.dynamic *= sckRation;
local_result.power.searchOp.dynamic *= sckRation;
local_result.power.readOp.leakage *= l_ip.nbanks;
local_result.power.readOp.longer_channel_leakage =
local_result.power.readOp.leakage * long_channel_device_reduction;
local_result.power = local_result.power * pppm_t;
local_result.data_array2->power.readOp.dynamic *= sckRation;
local_result.data_array2->power.writeOp.dynamic *= sckRation;
local_result.data_array2->power.searchOp.dynamic *= sckRation;
local_result.data_array2->power.readOp.leakage *= l_ip.nbanks;
local_result.data_array2->power.readOp.longer_channel_leakage =
local_result.data_array2->power.readOp.leakage *
long_channel_device_reduction;
local_result.data_array2->power = local_result.data_array2->power * pppm_t;
if (!(l_ip.pure_cam || l_ip.pure_ram || l_ip.fully_assoc) && l_ip.is_cache) {
local_result.tag_array2->power.readOp.dynamic *= sckRation;
local_result.tag_array2->power.writeOp.dynamic *= sckRation;
local_result.tag_array2->power.searchOp.dynamic *= sckRation;
local_result.tag_array2->power.readOp.leakage *= l_ip.nbanks;
local_result.tag_array2->power.readOp.longer_channel_leakage =
local_result.tag_array2->power.readOp.leakage *
long_channel_device_reduction;
local_result.tag_array2->power =
local_result.tag_array2->power * pppm_t;
}
power = local_result.power;
output_data.peak_dynamic_power = power.readOp.dynamic * clockRate;
output_data.subthreshold_leakage_power = power.readOp.leakage;
output_data.gate_leakage_power = power.readOp.gate_leakage;
}
void ArrayST::leakage_feedback(double temperature)
{
// Update the temperature. l_ip is already set and error-checked in the creator function.
l_ip.temp = (unsigned int)round(temperature/10.0)*10;
// This corresponds to cacti_interface() in the initialization process. Leakage power is updated here.
reconfigure(&l_ip,&local_result);
// Scale the power values. This is part of ArrayST::optimize_array().
double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty);
double macro_layout_overhead = g_tp.macro_layout_overhead;
double chip_PR_overhead = g_tp.chip_layout_overhead;
double total_overhead = macro_layout_overhead*chip_PR_overhead;
double pppm_t[4] = {total_overhead,1,1,total_overhead};
double sckRation = g_tp.sckt_co_eff;
local_result.power.readOp.dynamic *= sckRation;
local_result.power.writeOp.dynamic *= sckRation;
local_result.power.searchOp.dynamic *= sckRation;
local_result.power.readOp.leakage *= l_ip.nbanks;
local_result.power.readOp.longer_channel_leakage = local_result.power.readOp.leakage*long_channel_device_reduction;
local_result.power = local_result.power* pppm_t;
local_result.data_array2->power.readOp.dynamic *= sckRation;
local_result.data_array2->power.writeOp.dynamic *= sckRation;
local_result.data_array2->power.searchOp.dynamic *= sckRation;
local_result.data_array2->power.readOp.leakage *= l_ip.nbanks;
local_result.data_array2->power.readOp.longer_channel_leakage = local_result.data_array2->power.readOp.leakage*long_channel_device_reduction;
local_result.data_array2->power = local_result.data_array2->power* pppm_t;
if (!(l_ip.pure_cam || l_ip.pure_ram || l_ip.fully_assoc) && l_ip.is_cache)
{
local_result.tag_array2->power.readOp.dynamic *= sckRation;
local_result.tag_array2->power.writeOp.dynamic *= sckRation;
local_result.tag_array2->power.searchOp.dynamic *= sckRation;
local_result.tag_array2->power.readOp.leakage *= l_ip.nbanks;
local_result.tag_array2->power.readOp.longer_channel_leakage = local_result.tag_array2->power.readOp.leakage*long_channel_device_reduction;
local_result.tag_array2->power = local_result.tag_array2->power* pppm_t;
}
}
ArrayST::~ArrayST() {
local_result.cleanup();
}