gem5/util/cpt_upgrader.py
Andreas Hansson 9baa35ba80 Mem: Separate the host and guest views of memory backing store
This patch moves all the memory backing store operations from the
independent memory controllers to the global physical memory. The main
reason for this patch is to allow address striping in a future set of
patches, but at this point it already provides some useful
functionality in that it is now possible to change the number of
memory controllers and their address mapping in combination with
checkpointing. Thus, the host and guest view of the memory backing
store are now completely separate.

With this patch, the individual memory controllers are far simpler as
all responsibility for serializing/unserializing is moved to the
physical memory. Currently, the functionality is more or less moved
from AbstractMemory to PhysicalMemory without any major
changes. However, in a future patch the physical memory will also
resolve any ranges that are interleaved and properly assign the
backing store to the memory controllers, and keep the host memory as a
single contigous chunk per address range.

Functionality for future extensions which involve CPU virtualization
also enable the host to get pointers to the backing store.
2012-10-15 08:12:32 -04:00

215 lines
8.7 KiB
Python
Executable file

#!/usr/bin/env python
# Copyright (c) 2012 ARM Limited
# All rights reserved
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Ali Saidi
#
# This python code is used to migrate checkpoints that were created in one
# version of the simulator to newer version. As features are added or bugs are
# fixed some of the state that needs to be checkpointed can change. If you have
# many historic checkpoints that you use, manually editing them to fix them is
# both time consuming and error-prone.
# This script provides a way to migrate checkpoints to the newer repository in
# a programatic way. It can be imported into another script or used on the
# command line. From the command line the script will either migrate every
# checkpoint it finds recursively (-r option) or a single checkpoint. When a
# change is made to the gem5 repository that breaks previous checkpoints a
# from_N() method should be implemented here and the gem5CheckpointVersion
# variable in src/sim/serialize.hh should be incremented. For each version
# between the checkpoints current version and the new version the from_N()
# method will be run, passing in a ConfigParser object which contains the open
# file. As these operations can be isa specific the method can verify the isa
# and use regexes to find the correct sections that need to be updated.
import ConfigParser
import sys, os
import os.path as osp
# An example of a translator
def from_0(cpt):
if cpt.get('root','isa') == 'arm':
for sec in cpt.sections():
import re
# Search for all the execution contexts
if re.search('.*sys.*\.cpu.*\.x.\..*', sec):
# Update each one
mr = cpt.get(sec, 'miscRegs').split()
#mr.insert(21,0)
#mr.insert(26,0)
cpt.set(sec, 'miscRegs', ' '.join(str(x) for x in mr))
# The backing store supporting the memories in the system has changed
# in that it is now stored globally per address range. As a result the
# actual storage is separate from the memory controllers themselves.
def from_1(cpt):
for sec in cpt.sections():
import re
# Search for a physical memory
if re.search('.*sys.*\.physmem$', sec):
# Add the number of stores attribute to the global physmem
cpt.set(sec, 'nbr_of_stores', '1')
# Get the filename and size as this is moving to the
# specific backing store
mem_filename = cpt.get(sec, 'filename')
mem_size = cpt.get(sec, '_size')
cpt.remove_option(sec, 'filename')
cpt.remove_option(sec, '_size')
# Get the name so that we can create the new section
system_name = str(sec).split('.')[0]
section_name = system_name + '.physmem.store0'
cpt.add_section(section_name)
cpt.set(section_name, 'store_id', '0')
cpt.set(section_name, 'range_size', mem_size)
cpt.set(section_name, 'filename', mem_filename)
elif re.search('.*sys.*\.\w*mem$', sec):
# Due to the lack of information about a start address,
# this migration only works if there is a single memory in
# the system, thus starting at 0
raise ValueError("more than one memory detected (" + sec + ")")
migrations = []
migrations.append(from_0)
migrations.append(from_1)
verbose_print = False
def verboseprint(*args):
if not verbose_print:
return
for arg in args:
print arg,
print
def process_file(path, **kwargs):
if not osp.isfile(path):
import errno
raise IOError(ennro.ENOENT, "No such file", path)
verboseprint("Processing file %s...." % path)
if kwargs.get('backup', True):
import shutil
shutil.copyfile(path, path + '.bak')
cpt = ConfigParser.SafeConfigParser()
# gem5 is case sensitive with paramaters
cpt.optionxform = str
# Read the current data
cpt_file = file(path, 'r')
cpt.readfp(cpt_file)
cpt_file.close()
# Make sure we know what we're starting from
if not cpt.has_option('root','cpt_ver'):
raise LookupError("cannot determine version of checkpoint")
cpt_ver = cpt.getint('root','cpt_ver')
# If the current checkpoint is longer than the migrations list, we have a problem
# and someone didn't update this file
if cpt_ver > len(migrations):
raise ValueError("upgrade script is too old and needs updating")
verboseprint("\t...file is at version %#x" % cpt_ver)
if cpt_ver == len(migrations):
verboseprint("\t...nothing to do")
return
# Walk through every function from now until the end fixing the checkpoint
for v in xrange(cpt_ver,len(migrations)):
verboseprint("\t...migrating to version %#x" % (v + 1))
migrations[v](cpt)
cpt.set('root','cpt_ver', str(v + 1))
# Write the old data back
verboseprint("\t...completed")
cpt.write(file(path, 'w'))
if __name__ == '__main__':
from optparse import OptionParser
parser = OptionParser("usage: %prog [options] <filename or directory>")
parser.add_option("-r", "--recurse", action="store_true",
help="Recurse through all subdirectories modifying "\
"each checkpoint that is found")
parser.add_option("-N", "--no-backup", action="store_false",
dest="backup", default=True,
help="Do no backup each checkpoint before modifying it")
parser.add_option("-v", "--verbose", action="store_true",
help="Print out debugging information as")
(options, args) = parser.parse_args()
if len(args) != 1:
parser.error("You must specify a checkpoint file to modify or a "\
"directory of checkpoints to recursively update")
verbose_print = options.verbose
# Deal with shell variables and ~
path = osp.expandvars(osp.expanduser(args[0]))
# Process a single file if we have it
if osp.isfile(path):
process_file(path, **vars(options))
# Process an entire directory
elif osp.isdir(path):
cpt_file = osp.join(path, 'm5.cpt')
if options.recurse:
# Visit very file and see if it matches
for root,dirs,files in os.walk(path):
for name in files:
if name == 'm5.cpt':
process_file(osp.join(root,name), **vars(options))
for dir in dirs:
pass
# Maybe someone passed a cpt.XXXXXXX directory and not m5.cpt
elif osp.isfile(cpt_file):
process_file(cpt_file, **vars(options))
else:
print "Error: checkpoint file not found at in %s " % path,
print "and recurse not specified"
sys.exit(1)
sys.exit(0)