gem5/src/mem/ruby/buffers/MessageBuffer.cc
Nilay Vaish 5ffc165939 ruby: improved support for functional accesses
This patch adds support to different entities in the ruby memory system
for more reliable functional read/write accesses. Only the simple network
has been augmented as of now. Later on Garnet will also support functional
accesses.
The patch adds functional access code to all the different types of messages
that protocols can send around. These messages are functionally accessed
by going through the buffers maintained by the network entities.
The patch also rectifies some of the bugs found in coherence protocols while
testing the patch.

With this patch applied, functional writes always succeed. But functional
reads can still fail.
2012-10-15 17:51:57 -05:00

503 lines
15 KiB
C++

/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cassert>
#include "base/cprintf.hh"
#include "base/misc.hh"
#include "base/stl_helpers.hh"
#include "debug/RubyQueue.hh"
#include "mem/ruby/buffers/MessageBuffer.hh"
#include "mem/ruby/system/System.hh"
using namespace std;
using m5::stl_helpers::operator<<;
MessageBuffer::MessageBuffer(const string &name)
{
m_msg_counter = 0;
m_consumer_ptr = NULL;
m_ordering_set = false;
m_strict_fifo = true;
m_size = 0;
m_max_size = -1;
m_last_arrival_time = 0;
m_randomization = true;
m_size_last_time_size_checked = 0;
m_time_last_time_size_checked = 0;
m_time_last_time_enqueue = 0;
m_time_last_time_pop = 0;
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
m_not_avail_count = 0;
m_priority_rank = 0;
m_name = name;
m_stall_msg_map.clear();
m_input_link_id = 0;
m_vnet_id = 0;
}
int
MessageBuffer::getSize()
{
if (m_time_last_time_size_checked == g_system_ptr->getTime()) {
return m_size_last_time_size_checked;
} else {
m_time_last_time_size_checked = g_system_ptr->getTime();
m_size_last_time_size_checked = m_size;
return m_size;
}
}
bool
MessageBuffer::areNSlotsAvailable(int n)
{
// fast path when message buffers have infinite size
if (m_max_size == -1) {
return true;
}
// determine my correct size for the current cycle
// pop operations shouldn't effect the network's visible size
// until next cycle, but enqueue operations effect the visible
// size immediately
int current_size = max(m_size_at_cycle_start, m_size);
if (m_time_last_time_pop < g_system_ptr->getTime()) {
// no pops this cycle - m_size is correct
current_size = m_size;
} else {
if (m_time_last_time_enqueue < g_system_ptr->getTime()) {
// no enqueues this cycle - m_size_at_cycle_start is correct
current_size = m_size_at_cycle_start;
} else {
// both pops and enqueues occured this cycle - add new
// enqueued msgs to m_size_at_cycle_start
current_size = m_size_at_cycle_start+m_msgs_this_cycle;
}
}
// now compare the new size with our max size
if (current_size + n <= m_max_size) {
return true;
} else {
DPRINTF(RubyQueue, "n: %d, current_size: %d, m_size: %d, "
"m_max_size: %d\n",
n, current_size, m_size, m_max_size);
m_not_avail_count++;
return false;
}
}
const MsgPtr
MessageBuffer::getMsgPtrCopy() const
{
assert(isReady());
return m_prio_heap.front().m_msgptr->clone();
}
const Message*
MessageBuffer::peekAtHeadOfQueue() const
{
DPRINTF(RubyQueue, "Peeking at head of queue.\n");
assert(isReady());
const Message* msg_ptr = m_prio_heap.front().m_msgptr.get();
assert(msg_ptr);
DPRINTF(RubyQueue, "Message: %s\n", (*msg_ptr));
return msg_ptr;
}
// FIXME - move me somewhere else
int
random_time()
{
int time = 1;
time += random() & 0x3; // [0...3]
if ((random() & 0x7) == 0) { // 1 in 8 chance
time += 100 + (random() % 0xf); // 100 + [1...15]
}
return time;
}
void
MessageBuffer::enqueue(MsgPtr message, Time delta)
{
m_msg_counter++;
m_size++;
// record current time incase we have a pop that also adjusts my size
if (m_time_last_time_enqueue < g_system_ptr->getTime()) {
m_msgs_this_cycle = 0; // first msg this cycle
m_time_last_time_enqueue = g_system_ptr->getTime();
}
m_msgs_this_cycle++;
if (!m_ordering_set) {
panic("Ordering property of %s has not been set", m_name);
}
// Calculate the arrival time of the message, that is, the first
// cycle the message can be dequeued.
assert(delta>0);
Time current_time = g_system_ptr->getTime();
Time arrival_time = 0;
if (!RubySystem::getRandomization() || (m_randomization == false)) {
// No randomization
arrival_time = current_time + delta;
} else {
// Randomization - ignore delta
if (m_strict_fifo) {
if (m_last_arrival_time < current_time) {
m_last_arrival_time = current_time;
}
arrival_time = m_last_arrival_time + random_time();
} else {
arrival_time = current_time + random_time();
}
}
// Check the arrival time
assert(arrival_time > current_time);
if (m_strict_fifo) {
if (arrival_time < m_last_arrival_time) {
panic("FIFO ordering violated: %s name: %s current time: %d "
"delta: %d arrival_time: %d last arrival_time: %d\n",
*this, m_name,
current_time * g_system_ptr->clockPeriod(),
delta * g_system_ptr->clockPeriod(),
arrival_time * g_system_ptr->clockPeriod(),
m_last_arrival_time * g_system_ptr->clockPeriod());
}
}
// If running a cache trace, don't worry about the last arrival checks
if (!g_system_ptr->m_warmup_enabled) {
m_last_arrival_time = arrival_time;
}
// compute the delay cycles and set enqueue time
Message* msg_ptr = message.get();
assert(msg_ptr != NULL);
assert(g_system_ptr->getTime() >= msg_ptr->getLastEnqueueTime() &&
"ensure we aren't dequeued early");
msg_ptr->setDelayedCycles(g_system_ptr->getTime() -
msg_ptr->getLastEnqueueTime() +
msg_ptr->getDelayedCycles());
msg_ptr->setLastEnqueueTime(arrival_time);
// Insert the message into the priority heap
MessageBufferNode thisNode(arrival_time, m_msg_counter, message);
m_prio_heap.push_back(thisNode);
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
DPRINTF(RubyQueue, "Enqueue with arrival_time %lld.\n",
arrival_time * g_system_ptr->clockPeriod());
DPRINTF(RubyQueue, "Enqueue Message: %s.\n", (*(message.get())));
// Schedule the wakeup
if (m_consumer_ptr != NULL) {
m_consumer_ptr->scheduleEventAbsolute(arrival_time);
m_consumer_ptr->storeEventInfo(m_vnet_id);
} else {
panic("No consumer: %s name: %s\n", *this, m_name);
}
}
int
MessageBuffer::dequeue_getDelayCycles(MsgPtr& message)
{
int delay_cycles = -1; // null value
dequeue(message);
// get the delay cycles
delay_cycles = setAndReturnDelayCycles(message);
assert(delay_cycles >= 0);
return delay_cycles;
}
void
MessageBuffer::dequeue(MsgPtr& message)
{
DPRINTF(RubyQueue, "Dequeueing\n");
message = m_prio_heap.front().m_msgptr;
pop();
DPRINTF(RubyQueue, "Enqueue message is %s\n", (*(message.get())));
}
int
MessageBuffer::dequeue_getDelayCycles()
{
int delay_cycles = -1; // null value
// get MsgPtr of the message about to be dequeued
MsgPtr message = m_prio_heap.front().m_msgptr;
// get the delay cycles
delay_cycles = setAndReturnDelayCycles(message);
dequeue();
assert(delay_cycles >= 0);
return delay_cycles;
}
void
MessageBuffer::pop()
{
DPRINTF(RubyQueue, "Popping\n");
assert(isReady());
pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
m_prio_heap.pop_back();
// record previous size and time so the current buffer size isn't
// adjusted until next cycle
if (m_time_last_time_pop < g_system_ptr->getTime()) {
m_size_at_cycle_start = m_size;
m_time_last_time_pop = g_system_ptr->getTime();
}
m_size--;
}
void
MessageBuffer::clear()
{
m_prio_heap.clear();
m_msg_counter = 0;
m_size = 0;
m_time_last_time_enqueue = 0;
m_time_last_time_pop = 0;
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
}
void
MessageBuffer::recycle()
{
DPRINTF(RubyQueue, "Recycling.\n");
assert(isReady());
MessageBufferNode node = m_prio_heap.front();
pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
node.m_time = g_system_ptr->getTime() + m_recycle_latency;
m_prio_heap.back() = node;
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
m_consumer_ptr->scheduleEventAbsolute(g_system_ptr->getTime() +
m_recycle_latency);
}
void
MessageBuffer::reanalyzeMessages(const Address& addr)
{
DPRINTF(RubyQueue, "ReanalyzeMessages\n");
assert(m_stall_msg_map.count(addr) > 0);
//
// Put all stalled messages associated with this address back on the
// prio heap
//
while(!m_stall_msg_map[addr].empty()) {
m_msg_counter++;
MessageBufferNode msgNode(g_system_ptr->getTime() + 1,
m_msg_counter,
m_stall_msg_map[addr].front());
m_prio_heap.push_back(msgNode);
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
m_consumer_ptr->scheduleEventAbsolute(msgNode.m_time);
m_stall_msg_map[addr].pop_front();
}
m_stall_msg_map.erase(addr);
}
void
MessageBuffer::reanalyzeAllMessages()
{
DPRINTF(RubyQueue, "ReanalyzeAllMessages %s\n");
//
// Put all stalled messages associated with this address back on the
// prio heap
//
for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
map_iter != m_stall_msg_map.end();
++map_iter) {
while(!(map_iter->second).empty()) {
m_msg_counter++;
MessageBufferNode msgNode(g_system_ptr->getTime() + 1,
m_msg_counter,
(map_iter->second).front());
m_prio_heap.push_back(msgNode);
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
m_consumer_ptr->scheduleEventAbsolute(msgNode.m_time);
(map_iter->second).pop_front();
}
}
m_stall_msg_map.clear();
}
void
MessageBuffer::stallMessage(const Address& addr)
{
DPRINTF(RubyQueue, "Stalling due to %s\n", addr);
assert(isReady());
assert(addr.getOffset() == 0);
MsgPtr message = m_prio_heap.front().m_msgptr;
pop();
//
// Note: no event is scheduled to analyze the map at a later time.
// Instead the controller is responsible to call reanalyzeMessages when
// these addresses change state.
//
(m_stall_msg_map[addr]).push_back(message);
}
int
MessageBuffer::setAndReturnDelayCycles(MsgPtr msg_ptr)
{
int delay_cycles = -1; // null value
// get the delay cycles of the message at the top of the queue
// this function should only be called on dequeue
// ensure the msg hasn't been enqueued
assert(msg_ptr->getLastEnqueueTime() <= g_system_ptr->getTime());
msg_ptr->setDelayedCycles(g_system_ptr->getTime() -
msg_ptr->getLastEnqueueTime() +
msg_ptr->getDelayedCycles());
delay_cycles = msg_ptr->getDelayedCycles();
assert(delay_cycles >= 0);
return delay_cycles;
}
void
MessageBuffer::print(ostream& out) const
{
ccprintf(out, "[MessageBuffer: ");
if (m_consumer_ptr != NULL) {
ccprintf(out, " consumer-yes ");
}
vector<MessageBufferNode> copy(m_prio_heap);
sort_heap(copy.begin(), copy.end(), greater<MessageBufferNode>());
ccprintf(out, "%s] %s", copy, m_name);
}
void
MessageBuffer::printStats(ostream& out)
{
out << "MessageBuffer: " << m_name << " stats - msgs:" << m_msg_counter
<< " full:" << m_not_avail_count << endl;
}
bool
MessageBuffer::isReady() const
{
return ((m_prio_heap.size() > 0) &&
(m_prio_heap.front().m_time <= g_system_ptr->getTime()));
}
bool
MessageBuffer::functionalRead(Packet *pkt)
{
// Check the priority heap and read any messages that may
// correspond to the address in the packet.
for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
Message *msg = m_prio_heap[i].m_msgptr.get();
if (msg->functionalRead(pkt)) return true;
}
// Read the messages in the stall queue that correspond
// to the address in the packet.
for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
map_iter != m_stall_msg_map.end();
++map_iter) {
for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
it != (map_iter->second).end(); ++it) {
Message *msg = (*it).get();
if (msg->functionalRead(pkt)) return true;
}
}
return false;
}
uint32_t
MessageBuffer::functionalWrite(Packet *pkt)
{
uint32_t num_functional_writes = 0;
// Check the priority heap and write any messages that may
// correspond to the address in the packet.
for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
Message *msg = m_prio_heap[i].m_msgptr.get();
if (msg->functionalWrite(pkt)) {
num_functional_writes++;
}
}
// Check the stall queue and write any messages that may
// correspond to the address in the packet.
for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
map_iter != m_stall_msg_map.end();
++map_iter) {
for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
it != (map_iter->second).end(); ++it) {
Message *msg = (*it).get();
if (msg->functionalWrite(pkt)) {
num_functional_writes++;
}
}
}
return num_functional_writes;
}