5eab6c4b41
CPU cycle ticks. This allows the user to have CPUs of different frequencies, and also allows frequencies and latencies that are not evenly divisible by the CPU frequency. For now, the CPU frequency is still set to the global frequency, but soon, we'll hopefully make the global frequency fixed at something like 1THz and set all other frequencies independently. arch/alpha/ev5.cc: The cycles counter is based on the current cpu cycle. cpu/base_cpu.cc: frequency isn't the cpu parameter anymore, cycleTime is. cpu/base_cpu.hh: frequency isn't the cpu parameter anymore, cycleTime is. create several public functions for getting the cpu frequency and the numbers of ticks for a given number of cycles, etc. cpu/memtest/memtest.cc: cpu/simple_cpu/simple_cpu.cc: cpu/simple_cpu/simple_cpu.hh: cpu/trace/trace_cpu.cc: Now that ticks aren't cpu cycles, fixup code to advance by the proper number of ticks. cpu/memtest/memtest.hh: cpu/trace/trace_cpu.hh: Provide a function to get the number of ticks for a given number of cycles. dev/alpha_console.cc: Update for changes in the way that frequencies and latencies are accessed. Move some stuff to init() dev/alpha_console.hh: Need a pointer to the system and the cpu to get the frequency so we can pass the info to the console code. dev/etherbus.cc: dev/etherbus.hh: dev/etherlink.cc: dev/etherlink.hh: dev/ethertap.cc: dev/ide_disk.hh: dev/ns_gige.cc: dev/ns_gige.hh: update for changes in the way bandwidths are passed from python to C++ to accomidate the new way that ticks works. dev/ide_disk.cc: update for changes in the way bandwidths are passed from python to C++ to accomidate the new way that ticks works. Add some extra debugging printfs dev/platform.cc: dev/sinic.cc: dev/sinic.hh: outline the constructor and destructor dev/platform.hh: outline the constructor and destructor. don't keep track of the interrupt frequency. Only provide the accessor function. dev/tsunami.cc: dev/tsunami.hh: outline the constructor and destructor Don't set the interrupt frequency here. Get it from the actual device that does the interrupting. dev/tsunami_io.cc: dev/tsunami_io.hh: Make the interrupt interval a configuration parameter. (And convert the interval to the new latency/frequency stuff in the python) kern/linux/linux_system.cc: update for changes in the way bandwidths are passed from python to C++ to accomidate the new way that ticks works. For now, we must get the boot cpu's frequency as a parameter since allowing the system to have a pointer to the boot cpu would cause a cycle. kern/tru64/tru64_system.cc: For now, we must get the boot cpu's frequency as a parameter since allowing the system to have a pointer to the boot cpu would cause a cycle. python/m5/config.py: Fix support for cycle_time relative latencies and frequencies. Add support for getting a NetworkBandwidth or a MemoryBandwidth. python/m5/objects/BaseCPU.mpy: All CPUs now have a cycle_time. The default is the global frequency, but it is now possible to set the global frequency to some large value (like 1THz) and set each CPU frequency independently. python/m5/objects/BaseCache.mpy: python/m5/objects/Ide.mpy: Make this a Latency parameter python/m5/objects/BaseSystem.mpy: We need to pass the boot CPU's frequency to the system python/m5/objects/Ethernet.mpy: Update parameter types to use latency and bandwidth types python/m5/objects/Platform.mpy: this frequency isn't needed. We get it from the clock interrupt. python/m5/objects/Tsunami.mpy: The clock generator should hold the frequency sim/eventq.hh: Need to remove this assertion because the writeback event queue is different from the CPU's event queue which can cause this assertion to fail. sim/process.cc: Fix comment. sim/system.hh: Struct member to hold the boot CPU's frequency. sim/universe.cc: remove unneeded variable. --HG-- extra : convert_revision : 51efe4041095234bf458d9b3b0d417f4cae16fdc
318 lines
9.4 KiB
C++
318 lines
9.4 KiB
C++
/*
|
|
* Copyright (c) 2002-2004 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <sstream>
|
|
|
|
#include "base/cprintf.hh"
|
|
#include "base/loader/symtab.hh"
|
|
#include "base/misc.hh"
|
|
#include "base/output.hh"
|
|
#include "cpu/base_cpu.hh"
|
|
#include "cpu/exec_context.hh"
|
|
#include "cpu/sampling_cpu/sampling_cpu.hh"
|
|
#include "sim/param.hh"
|
|
#include "sim/sim_events.hh"
|
|
|
|
using namespace std;
|
|
|
|
vector<BaseCPU *> BaseCPU::cpuList;
|
|
|
|
// This variable reflects the max number of threads in any CPU. Be
|
|
// careful to only use it once all the CPUs that you care about have
|
|
// been initialized
|
|
int maxThreadsPerCPU = 1;
|
|
|
|
#ifdef FULL_SYSTEM
|
|
BaseCPU::BaseCPU(Params *p)
|
|
: SimObject(p->name), cycleTime(p->cycleTime), checkInterrupts(true),
|
|
params(p), number_of_threads(p->numberOfThreads), system(p->system)
|
|
#else
|
|
BaseCPU::BaseCPU(Params *p)
|
|
: SimObject(p->name), cycleTime(p->cycleTime), params(p),
|
|
number_of_threads(p->numberOfThreads)
|
|
#endif
|
|
{
|
|
// add self to global list of CPUs
|
|
cpuList.push_back(this);
|
|
|
|
if (number_of_threads > maxThreadsPerCPU)
|
|
maxThreadsPerCPU = number_of_threads;
|
|
|
|
// allocate per-thread instruction-based event queues
|
|
comInstEventQueue = new EventQueue *[number_of_threads];
|
|
for (int i = 0; i < number_of_threads; ++i)
|
|
comInstEventQueue[i] = new EventQueue("instruction-based event queue");
|
|
|
|
//
|
|
// set up instruction-count-based termination events, if any
|
|
//
|
|
if (p->max_insts_any_thread != 0)
|
|
for (int i = 0; i < number_of_threads; ++i)
|
|
new SimExitEvent(comInstEventQueue[i], p->max_insts_any_thread,
|
|
"a thread reached the max instruction count");
|
|
|
|
if (p->max_insts_all_threads != 0) {
|
|
// allocate & initialize shared downcounter: each event will
|
|
// decrement this when triggered; simulation will terminate
|
|
// when counter reaches 0
|
|
int *counter = new int;
|
|
*counter = number_of_threads;
|
|
for (int i = 0; i < number_of_threads; ++i)
|
|
new CountedExitEvent(comInstEventQueue[i],
|
|
"all threads reached the max instruction count",
|
|
p->max_insts_all_threads, *counter);
|
|
}
|
|
|
|
// allocate per-thread load-based event queues
|
|
comLoadEventQueue = new EventQueue *[number_of_threads];
|
|
for (int i = 0; i < number_of_threads; ++i)
|
|
comLoadEventQueue[i] = new EventQueue("load-based event queue");
|
|
|
|
//
|
|
// set up instruction-count-based termination events, if any
|
|
//
|
|
if (p->max_loads_any_thread != 0)
|
|
for (int i = 0; i < number_of_threads; ++i)
|
|
new SimExitEvent(comLoadEventQueue[i], p->max_loads_any_thread,
|
|
"a thread reached the max load count");
|
|
|
|
if (p->max_loads_all_threads != 0) {
|
|
// allocate & initialize shared downcounter: each event will
|
|
// decrement this when triggered; simulation will terminate
|
|
// when counter reaches 0
|
|
int *counter = new int;
|
|
*counter = number_of_threads;
|
|
for (int i = 0; i < number_of_threads; ++i)
|
|
new CountedExitEvent(comLoadEventQueue[i],
|
|
"all threads reached the max load count",
|
|
p->max_loads_all_threads, *counter);
|
|
}
|
|
|
|
#ifdef FULL_SYSTEM
|
|
memset(interrupts, 0, sizeof(interrupts));
|
|
intstatus = 0;
|
|
#endif
|
|
|
|
functionTracingEnabled = false;
|
|
if (p->functionTrace) {
|
|
functionTraceStream = simout.find(csprintf("ftrace.%s", name()));
|
|
currentFunctionStart = currentFunctionEnd = 0;
|
|
functionEntryTick = p->functionTraceStart;
|
|
|
|
if (p->functionTraceStart == 0) {
|
|
functionTracingEnabled = true;
|
|
} else {
|
|
Event *e =
|
|
new EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace>(this,
|
|
true);
|
|
e->schedule(p->functionTraceStart);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
BaseCPU::enableFunctionTrace()
|
|
{
|
|
functionTracingEnabled = true;
|
|
}
|
|
|
|
BaseCPU::~BaseCPU()
|
|
{
|
|
}
|
|
|
|
void
|
|
BaseCPU::init()
|
|
{
|
|
if (!params->deferRegistration)
|
|
registerExecContexts();
|
|
}
|
|
|
|
void
|
|
BaseCPU::regStats()
|
|
{
|
|
using namespace Stats;
|
|
|
|
numCycles
|
|
.name(name() + ".numCycles")
|
|
.desc("number of cpu cycles simulated")
|
|
;
|
|
|
|
int size = execContexts.size();
|
|
if (size > 1) {
|
|
for (int i = 0; i < size; ++i) {
|
|
stringstream namestr;
|
|
ccprintf(namestr, "%s.ctx%d", name(), i);
|
|
execContexts[i]->regStats(namestr.str());
|
|
}
|
|
} else if (size == 1)
|
|
execContexts[0]->regStats(name());
|
|
}
|
|
|
|
|
|
void
|
|
BaseCPU::registerExecContexts()
|
|
{
|
|
for (int i = 0; i < execContexts.size(); ++i) {
|
|
ExecContext *xc = execContexts[i];
|
|
int cpu_id;
|
|
|
|
#ifdef FULL_SYSTEM
|
|
cpu_id = system->registerExecContext(xc);
|
|
#else
|
|
cpu_id = xc->process->registerExecContext(xc);
|
|
#endif
|
|
|
|
xc->cpu_id = cpu_id;
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
BaseCPU::switchOut(SamplingCPU *sampler)
|
|
{
|
|
panic("This CPU doesn't support sampling!");
|
|
}
|
|
|
|
void
|
|
BaseCPU::takeOverFrom(BaseCPU *oldCPU)
|
|
{
|
|
assert(execContexts.size() == oldCPU->execContexts.size());
|
|
|
|
for (int i = 0; i < execContexts.size(); ++i) {
|
|
ExecContext *newXC = execContexts[i];
|
|
ExecContext *oldXC = oldCPU->execContexts[i];
|
|
|
|
newXC->takeOverFrom(oldXC);
|
|
assert(newXC->cpu_id == oldXC->cpu_id);
|
|
#ifdef FULL_SYSTEM
|
|
system->replaceExecContext(newXC, newXC->cpu_id);
|
|
#else
|
|
assert(newXC->process == oldXC->process);
|
|
newXC->process->replaceExecContext(newXC, newXC->cpu_id);
|
|
#endif
|
|
}
|
|
|
|
#ifdef FULL_SYSTEM
|
|
for (int i = 0; i < NumInterruptLevels; ++i)
|
|
interrupts[i] = oldCPU->interrupts[i];
|
|
intstatus = oldCPU->intstatus;
|
|
#endif
|
|
}
|
|
|
|
|
|
#ifdef FULL_SYSTEM
|
|
void
|
|
BaseCPU::post_interrupt(int int_num, int index)
|
|
{
|
|
DPRINTF(Interrupt, "Interrupt %d:%d posted\n", int_num, index);
|
|
|
|
if (int_num < 0 || int_num >= NumInterruptLevels)
|
|
panic("int_num out of bounds\n");
|
|
|
|
if (index < 0 || index >= sizeof(uint64_t) * 8)
|
|
panic("int_num out of bounds\n");
|
|
|
|
checkInterrupts = true;
|
|
interrupts[int_num] |= 1 << index;
|
|
intstatus |= (ULL(1) << int_num);
|
|
}
|
|
|
|
void
|
|
BaseCPU::clear_interrupt(int int_num, int index)
|
|
{
|
|
DPRINTF(Interrupt, "Interrupt %d:%d cleared\n", int_num, index);
|
|
|
|
if (int_num < 0 || int_num >= NumInterruptLevels)
|
|
panic("int_num out of bounds\n");
|
|
|
|
if (index < 0 || index >= sizeof(uint64_t) * 8)
|
|
panic("int_num out of bounds\n");
|
|
|
|
interrupts[int_num] &= ~(1 << index);
|
|
if (interrupts[int_num] == 0)
|
|
intstatus &= ~(ULL(1) << int_num);
|
|
}
|
|
|
|
void
|
|
BaseCPU::clear_interrupts()
|
|
{
|
|
DPRINTF(Interrupt, "Interrupts all cleared\n");
|
|
|
|
memset(interrupts, 0, sizeof(interrupts));
|
|
intstatus = 0;
|
|
}
|
|
|
|
|
|
void
|
|
BaseCPU::serialize(std::ostream &os)
|
|
{
|
|
SERIALIZE_ARRAY(interrupts, NumInterruptLevels);
|
|
SERIALIZE_SCALAR(intstatus);
|
|
}
|
|
|
|
void
|
|
BaseCPU::unserialize(Checkpoint *cp, const std::string §ion)
|
|
{
|
|
UNSERIALIZE_ARRAY(interrupts, NumInterruptLevels);
|
|
UNSERIALIZE_SCALAR(intstatus);
|
|
}
|
|
|
|
#endif // FULL_SYSTEM
|
|
|
|
void
|
|
BaseCPU::traceFunctionsInternal(Addr pc)
|
|
{
|
|
if (!debugSymbolTable)
|
|
return;
|
|
|
|
// if pc enters different function, print new function symbol and
|
|
// update saved range. Otherwise do nothing.
|
|
if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
|
|
string sym_str;
|
|
bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
|
|
currentFunctionStart,
|
|
currentFunctionEnd);
|
|
|
|
if (!found) {
|
|
// no symbol found: use addr as label
|
|
sym_str = csprintf("0x%x", pc);
|
|
currentFunctionStart = pc;
|
|
currentFunctionEnd = pc + 1;
|
|
}
|
|
|
|
ccprintf(*functionTraceStream, " (%d)\n%d: %s",
|
|
curTick - functionEntryTick, curTick, sym_str);
|
|
functionEntryTick = curTick;
|
|
}
|
|
}
|
|
|
|
|
|
DEFINE_SIM_OBJECT_CLASS_NAME("BaseCPU", BaseCPU)
|