gem5/base/res_list.hh
Steve Reinhardt 548b4a1cb0 Change "Foo& foo" declarations to "Foo &foo".
This primarily to be internally consistent (sometimes we used one,
sometimes the other, even within the same line of code!).
I picked the latter to be symmetric with "Foo *foo".

base/cprintf_formats.hh:
base/range.hh:
base/refcnt.hh:
base/res_list.hh:
base/statistics.hh:
base/str.hh:
cpu/exec_context.hh:
cpu/simple_cpu/simple_cpu.cc:
cpu/simple_cpu/simple_cpu.hh:
sim/serialize.cc:
sim/serialize.hh:
sim/syscall_emul.hh:
    Change "Foo& foo" declarations to "Foo &foo".

--HG--
extra : convert_revision : ca1b0e85a578b539214bda3b8d61ac23792f2e87
2004-02-02 15:55:35 -08:00

755 lines
17 KiB
C++

/*
* Copyright (c) 2003 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __RES_LIST_HH__
#define __RES_LIST_HH__
#include "base/cprintf.hh"
#include <assert.h>
#define DEBUG_REMOVE 0
#define DEBUG_MEMORY 0
//#define DEBUG_MEMORY DEBUG
class res_list_base
{
#if DEBUG_MEMORY
protected:
static long long allocated_elements;
static long long allocated_lists;
public:
long long get_elements(void) {
return allocated_elements;
}
long long get_lists(void) {
return allocated_lists;
}
#endif
};
#if DEBUG_MEMORY
extern void what_the(void);
#endif
template<class T>
class res_list : public res_list_base
{
public:
class iterator;
class res_element
{
res_element *next;
res_element *prev;
T *data;
bool allocate_data;
public:
// always adds to the END of the list
res_element(res_element *_prev, bool allocate);
~res_element();
void dump(void);
friend class res_list<T>;
friend class res_list<T>::iterator;
};
class iterator
{
private:
res_element *p;
friend class res_list<T>;
public:
// Constructors
iterator(res_element *q) : p(q) {}
iterator(void) { p=0; };
void dump(void);
T* data_ptr(void);
res_element *res_el_ptr(void) { return p;}
void point_to(T &d) { p->data = &d; }
iterator next(void) { return iterator(p->next); }
iterator prev(void) { return iterator(p->prev); }
bool operator== (iterator x) { return (x.p == this->p); }
bool operator != (iterator x) { return (x.p != this->p); }
T &operator * (void) { return *(p->data); }
T* operator -> (void) { return p->data; }
bool isnull(void) { return (p==0); }
bool notnull(void) { return (p!=0); }
};
private:
iterator unused_elements;
iterator head_ptr;
iterator tail_ptr;
unsigned base_elements;
unsigned extra_elements;
unsigned active_elements;
bool allocate_storage;
unsigned build_size;
int remove_count;
//
// Allocate new elements, and assign them to the unused_elements
// list.
//
unsigned allocate_elements(unsigned num, bool allocate_storage);
public:
//
// List Constructor
//
res_list(unsigned size, bool alloc_storage = false,
unsigned build_sz = 5);
//
// List Destructor
//
~res_list();
iterator head(void) {return head_ptr;};
iterator tail(void) {return tail_ptr;};
unsigned num_free(void) { return size() - count(); }
unsigned size(void) { return base_elements + extra_elements; }
unsigned count(void) { return active_elements; }
bool empty(void) { return count() == 0; }
bool full(void);
//
// Insert with data copy
//
iterator insert_after(iterator prev, T *d);
iterator insert_after(iterator prev, T &d);
iterator insert_before(iterator prev, T *d);
iterator insert_before(iterator prev, T &d);
//
// Insert new list element (no data copy)
//
iterator insert_after(iterator prev);
iterator insert_before(iterator prev);
iterator add_tail(T *d) { return insert_after(tail_ptr, d); }
iterator add_tail(T &d) { return insert_after(tail_ptr, d); }
iterator add_tail(void) { return insert_after(tail_ptr); }
iterator add_head(T *d) { return insert_before(head_ptr, d); }
iterator add_head(T &d) { return insert_before(head_ptr, d); }
iterator add_head(void) { return insert_before(head_ptr); }
iterator remove(iterator q);
iterator remove_head(void) {return remove(head_ptr);}
iterator remove_tail(void) {return remove(tail_ptr);}
bool in_list(iterator j);
void free_extras(void);
void clear(void);
void dump(void);
void raw_dump(void);
};
template <class T>
inline
res_list<T>::res_element::res_element(res_element *_prev, bool allocate)
{
allocate_data = allocate;
prev = _prev;
next = 0;
if (prev)
prev->next = this;
if (allocate)
data = new T;
else
data = 0;
#if DEBUG_MEMORY
++allocated_elements;
#endif
}
template <class T>
inline
res_list<T>::res_element::~res_element(void)
{
if (prev)
prev->next = next;
if (next)
next->prev = prev;
if (allocate_data)
delete data;
#if DEBUG_MEMORY
--allocated_elements;
#endif
}
template <class T>
inline void
res_list<T>::res_element::dump(void)
{
cprintf(" prev = %#x\n", prev);
cprintf(" next = %#x\n", next);
cprintf(" data = %#x\n", data);
}
template <class T>
inline void
res_list<T>::iterator::dump(void)
{
if (p && p->data)
p->data->dump();
else {
if (!p)
cprintf(" Null Pointer\n");
else
cprintf(" Null 'data' Pointer\n");
}
}
template <class T>
inline T *
res_list<T>::iterator::data_ptr(void)
{
if (p)
return p->data;
else
return 0;
}
//
// Allocate new elements, and assign them to the unused_elements
// list.
//
template <class T>
inline unsigned
res_list<T>::allocate_elements(unsigned num, bool allocate_storage)
{
res_element *pnew, *plast = 0, *pfirst=0;
for (int i=0; i<num; ++i) {
pnew = new res_element(plast, allocate_storage);
if (i==0)
pfirst = pnew;
plast = pnew;
}
if (unused_elements.notnull()) {
// Add these new elements to the front of the list
plast->next = unused_elements.res_el_ptr();
unused_elements.res_el_ptr()->prev = plast;
}
unused_elements = iterator(pfirst);
return num;
}
template <class T>
inline
res_list<T>::res_list(unsigned size, bool alloc_storage, unsigned build_sz)
{
#if DEBUG_MEMORY
++allocated_lists;
#endif
extra_elements = 0;
active_elements = 0;
build_size = build_sz;
allocate_storage = alloc_storage;
remove_count = 0;
// Create the new elements
base_elements = allocate_elements(size, alloc_storage);
// The list of active elements
head_ptr = iterator(0);
tail_ptr = iterator(0);
}
//
// List Destructor
//
template <class T>
inline
res_list<T>::~res_list(void)
{
iterator n;
#if DEBUG_MEMORY
--allocated_lists;
#endif
// put everything into the unused list
clear();
// rudely delete all the res_elements
for (iterator p = unused_elements;
p.notnull();
p = n) {
n = p.next();
// delete the res_element
// (it will take care of deleting the data)
delete p.res_el_ptr();
}
}
template <class T>
inline bool
res_list<T>::full(void)
{
if (build_size)
return false;
else
return unused_elements.isnull();
}
//
// Insert with data copy
//
template <class T>
inline typename res_list<T>::iterator
res_list<T>::insert_after(iterator prev, T *d)
{
iterator p;
if (!allocate_storage)
panic("Can't copy data... not allocating storage");
p = insert_after(prev);
if (p.notnull())
*p = *d;
return p;
}
template <class T>
inline typename res_list<T>::iterator
res_list<T>::insert_after(iterator prev, T &d)
{
iterator p;
p = insert_after(prev);
if (p.notnull()) {
if (allocate_storage) {
// if we allocate storage, then copy the contents of the
// specified object to our object
*p = d;
}
else {
// if we don't allocate storage, then we just want to
// point to the specified object
p.point_to(d);
}
}
return p;
}
template <class T>
inline typename res_list<T>::iterator
res_list<T>::insert_after(iterator prev)
{
#if DEBUG_MEMORY
if (active_elements > 2*base_elements) {
what_the();
}
#endif
// If we have no unused elements, make some more
if (unused_elements.isnull()) {
if (build_size == 0) {
return 0; // No space left, and can't allocate more....
}
extra_elements += allocate_elements(build_size, allocate_storage);
}
// grab the first unused element
res_element *p = unused_elements.res_el_ptr();
unused_elements = unused_elements.next();
++active_elements;
// Insert the new element
if (head_ptr.isnull()) {
//
// Special case #1: Empty List
//
head_ptr = p;
tail_ptr = p;
p->prev = 0;
p->next = 0;
}
else if (prev.isnull()) {
//
// Special case #2: Insert at head
//
// our next ptr points to old head element
p->next = head_ptr.res_el_ptr();
// our element becomes the new head element
head_ptr = p;
// no previous element for the head
p->prev = 0;
// old head element points back to this element
p->next->prev = p;
}
else if (prev.next().isnull()) {
//
// Special case #3 Insert at tail
//
// our prev pointer points to old tail element
p->prev = tail_ptr.res_el_ptr();
// our element becomes the new tail
tail_ptr = p;
// no next element for the tail
p->next = 0;
// old tail element point to this element
p->prev->next = p;
}
else {
//
// Normal insertion (after prev)
//
p->prev = prev.res_el_ptr();
p->next = prev.next().res_el_ptr();
prev.res_el_ptr()->next = p;
p->next->prev = p;
}
return iterator(p);
}
template <class T>
inline typename res_list<T>::iterator
res_list<T>::insert_before(iterator next, T &d)
{
iterator p;
p = insert_before(next);
if (p.notnull()) {
if (allocate_storage) {
// if we allocate storage, then copy the contents of the
// specified object to our object
*p = d;
}
else {
// if we don't allocate storage, then we just want to
// point to the specified object
p.point_to(d);
}
}
return p;
}
template <class T>
inline typename res_list<T>::iterator
res_list<T>::insert_before(iterator next)
{
#if DEBUG_MEMORY
if (active_elements > 2*base_elements) {
what_the();
}
#endif
// If we have no unused elements, make some more
if (unused_elements.isnull()) {
if (build_size == 0) {
return 0; // No space left, and can't allocate more....
}
extra_elements += allocate_elements(build_size, allocate_storage);
}
// grab the first unused element
res_element *p = unused_elements.res_el_ptr();
unused_elements = unused_elements.next();
++active_elements;
// Insert the new element
if (head_ptr.isnull()) {
//
// Special case #1: Empty List
//
head_ptr = p;
tail_ptr = p;
p->prev = 0;
p->next = 0;
}
else if (next.isnull()) {
//
// Special case #2 Insert at tail
//
// our prev pointer points to old tail element
p->prev = tail_ptr.res_el_ptr();
// our element becomes the new tail
tail_ptr = p;
// no next element for the tail
p->next = 0;
// old tail element point to this element
p->prev->next = p;
}
else if (next.prev().isnull()) {
//
// Special case #3: Insert at head
//
// our next ptr points to old head element
p->next = head_ptr.res_el_ptr();
// our element becomes the new head element
head_ptr = p;
// no previous element for the head
p->prev = 0;
// old head element points back to this element
p->next->prev = p;
}
else {
//
// Normal insertion (before next)
//
p->next = next.res_el_ptr();
p->prev = next.prev().res_el_ptr();
next.res_el_ptr()->prev = p;
p->prev->next = p;
}
return iterator(p);
}
template <class T>
inline typename res_list<T>::iterator
res_list<T>::remove(iterator q)
{
res_element *p = q.res_el_ptr();
iterator n = 0;
// Handle the special cases
if (active_elements == 1) { // This is the only element
head_ptr = 0;
tail_ptr = 0;
}
else if (q == head_ptr) { // This is the head element
head_ptr = q.next();
head_ptr.res_el_ptr()->prev = 0;
n = head_ptr;
}
else if (q == tail_ptr) { // This is the tail element
tail_ptr = q.prev();
tail_ptr.res_el_ptr()->next = 0;
}
else { // This is between two elements
p->prev->next = p->next;
p->next->prev = p->prev;
// Get the "next" element for return
n = p->next;
}
--active_elements;
// Put this element back onto the unused list
p->next = unused_elements.res_el_ptr();
p->prev = 0;
if (p->next) { // NULL if unused list is empty
p->next->prev = p;
}
if (!allocate_storage) {
p->data = 0;
}
unused_elements = q;
// A little "garbage collection"
if (++remove_count > 10) {
// free_extras();
remove_count = 0;
}
#if DEBUG_REMOVE
unsigned unused_count = 0;
for (iterator i=unused_elements;
i.notnull();
i = i.next()) {
++unused_count;
}
assert((active_elements+unused_count) == (base_elements+extra_elements));
#endif
return iterator(n);
}
template <class T>
inline bool
res_list<T>::in_list(iterator j)
{
iterator i;
for (i=head(); i.notnull(); i=i.next()) {
if (j.res_el_ptr() == i.res_el_ptr()) {
return true;
}
}
return false;
}
template <class T>
inline void
res_list<T>::free_extras(void)
{
unsigned num_unused = base_elements + extra_elements - active_elements;
unsigned to_free = extra_elements;
res_element *p;
if (extra_elements != 0) {
//
// Free min(extra_elements, # unused elements)
//
if (extra_elements > num_unused) {
to_free = num_unused;
}
p = unused_elements.res_el_ptr();
for (int i=0; i<to_free; ++i) {
res_element *q = p->next;
delete p;
p = q;
}
// update the unused element pointer to point to the first
// element that wasn't deleted.
unused_elements = iterator(p);
// Update the number of extra elements
extra_elements -= to_free;
}
return;
}
template <class T>
inline void
res_list<T>::clear(void)
{
iterator i,n;
for (i=head_ptr; i.notnull(); i=n) {
n = i.next();
remove(i);
}
free_extras();
}
template <class T>
inline void
res_list<T>::dump(void)
{
for (iterator i=head(); !i.isnull(); i=i.next())
i->dump();
}
template <class T>
inline void
res_list<T>::raw_dump(void)
{
int j = 0;
res_element *p;
for (iterator i=head(); !i.isnull(); i=i.next()) {
cprintf("Element %d:\n", j);
if (i.notnull()) {
p = i.res_el_ptr();
cprintf(" points to res_element @ %#x\n", p);
p->dump();
cprintf(" Data Element:\n");
i->dump();
}
else {
cprintf(" NULL iterator!\n");
}
++j;
}
}
#endif // __RES_LIST_HH__