gem5/cpu/checker/cpu.cc
Kevin Lim 5be592f870 Make checker handle not executing the same instruction as the main CPU a little better.
Also add the option for the checker to update itself with the main CPU's state if it executes an instruction differently (so it will handle DMA timing errors properly).

--HG--
extra : convert_revision : 760d11ec1a249bc75e2807d320866b5d08c2b6f2
2006-08-02 12:06:59 -04:00

779 lines
22 KiB
C++

/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <list>
#include <string>
#include "base/refcnt.hh"
#include "cpu/base.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/exec_context.hh"
#include "cpu/static_inst.hh"
#include "sim/byteswap.hh"
#include "sim/sim_object.hh"
#include "sim/stats.hh"
#include "cpu/o3/alpha_dyn_inst.hh"
#include "cpu/o3/alpha_impl.hh"
#include "cpu/ozone/dyn_inst.hh"
#include "cpu/ozone/ozone_impl.hh"
#include "cpu/ozone/simple_impl.hh"
#if FULL_SYSTEM
#include "sim/system.hh"
#include "arch/vtophys.hh"
#endif // FULL_SYSTEM
using namespace std;
//The CheckerCPU does alpha only
using namespace AlphaISA;
void
CheckerCPU::init()
{
}
CheckerCPU::CheckerCPU(Params *p)
: BaseCPU(p), cpuXC(NULL), xcProxy(NULL)
{
memReq = new MemReq();
memReq->xc = xcProxy;
memReq->asid = 0;
memReq->data = new uint8_t[64];
numInst = 0;
startNumInst = 0;
numLoad = 0;
startNumLoad = 0;
youngestSN = 0;
changedPC = willChangePC = changedNextPC = false;
exitOnError = p->exitOnError;
updateOnError = p->updateOnError;
#if FULL_SYSTEM
itb = p->itb;
dtb = p->dtb;
systemPtr = NULL;
memPtr = NULL;
#endif
}
CheckerCPU::~CheckerCPU()
{
}
void
CheckerCPU::setMemory(FunctionalMemory *mem)
{
memPtr = mem;
#if !FULL_SYSTEM
cpuXC = new CPUExecContext(this, /* thread_num */ 0, mem,
/* asid */ 0);
cpuXC->setStatus(ExecContext::Suspended);
xcProxy = cpuXC->getProxy();
execContexts.push_back(xcProxy);
#else
if (systemPtr) {
cpuXC = new CPUExecContext(this, 0, systemPtr, itb, dtb, memPtr, false);
cpuXC->setStatus(ExecContext::Suspended);
xcProxy = cpuXC->getProxy();
execContexts.push_back(xcProxy);
memReq->xc = xcProxy;
delete cpuXC->kernelStats;
cpuXC->kernelStats = NULL;
}
#endif
}
#if FULL_SYSTEM
void
CheckerCPU::setSystem(System *system)
{
systemPtr = system;
if (memPtr) {
cpuXC = new CPUExecContext(this, 0, systemPtr, itb, dtb, memPtr, false);
cpuXC->setStatus(ExecContext::Suspended);
xcProxy = cpuXC->getProxy();
execContexts.push_back(xcProxy);
memReq->xc = xcProxy;
delete cpuXC->kernelStats;
cpuXC->kernelStats = NULL;
}
}
#endif
void
CheckerCPU::serialize(ostream &os)
{
/*
BaseCPU::serialize(os);
SERIALIZE_SCALAR(inst);
nameOut(os, csprintf("%s.xc", name()));
cpuXC->serialize(os);
cacheCompletionEvent.serialize(os);
*/
}
void
CheckerCPU::unserialize(Checkpoint *cp, const string &section)
{
/*
BaseCPU::unserialize(cp, section);
UNSERIALIZE_SCALAR(inst);
cpuXC->unserialize(cp, csprintf("%s.xc", section));
*/
}
Fault
CheckerCPU::copySrcTranslate(Addr src)
{
panic("Unimplemented!");
}
Fault
CheckerCPU::copy(Addr dest)
{
panic("Unimplemented!");
}
template <class T>
Fault
CheckerCPU::read(Addr addr, T &data, unsigned flags)
{
memReq->reset(addr, sizeof(T), flags);
// translate to physical address
translateDataReadReq(memReq);
memReq->cmd = Read;
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
if (!(memReq->flags & UNCACHEABLE)) {
// Access memory to see if we have the same data
cpuXC->read(memReq, data);
} else {
// Assume the data is correct if it's an uncached access
memcpy(&data, &unverifiedResult.integer, sizeof(T));
}
return NoFault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
CheckerCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
CheckerCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
CheckerCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
CheckerCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
CheckerCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
memReq->reset(addr, sizeof(T), flags);
// translate to physical address
cpuXC->translateDataWriteReq(memReq);
// Can compare the write data and result only if it's cacheable,
// not a store conditional, or is a store conditional that
// succeeded.
// @todo: Verify that actual memory matches up with these values.
// Right now it only verifies that the instruction data is the
// same as what was in the request that got sent to memory; there
// is no verification that it is the same as what is in memory.
// This is because the LSQ would have to be snooped in the CPU to
// verify this data.
if (unverifiedReq &&
!(unverifiedReq->flags & UNCACHEABLE) &&
(!(unverifiedReq->flags & LOCKED) ||
((unverifiedReq->flags & LOCKED) &&
unverifiedReq->result == 1))) {
#if 0
memReq->cmd = Read;
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
cpuXC->read(memReq, inst_data);
#endif
T inst_data;
memcpy(&inst_data, unverifiedReq->data, sizeof(T));
if (data != inst_data) {
warn("%lli: Store value does not match value in memory! "
"Instruction: %#x, memory: %#x",
curTick, inst_data, data);
handleError();
}
}
// Assume the result was the same as the one passed in. This checker
// doesn't check if the SC should succeed or fail, it just checks the
// value.
if (res)
*res = unverifiedReq->result;
return NoFault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
CheckerCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
CheckerCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
CheckerCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
CheckerCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
#if FULL_SYSTEM
Addr
CheckerCPU::dbg_vtophys(Addr addr)
{
return vtophys(xcProxy, addr);
}
#endif // FULL_SYSTEM
bool
CheckerCPU::translateInstReq(MemReqPtr &req)
{
#if FULL_SYSTEM
return (cpuXC->translateInstReq(req) == NoFault);
#else
cpuXC->translateInstReq(req);
return true;
#endif
}
void
CheckerCPU::translateDataReadReq(MemReqPtr &req)
{
cpuXC->translateDataReadReq(req);
if (!unverifiedReq) {
warn("%lli: Request virtual addresses do not match! Inst: N/A, "
"checker: %#x",
curTick, req->vaddr);
return;
} else if (req->vaddr != unverifiedReq->vaddr) {
warn("%lli: Request virtual addresses do not match! Inst: %#x, "
"checker: %#x",
curTick, unverifiedReq->vaddr, req->vaddr);
handleError();
}
req->paddr = unverifiedReq->paddr;
if (checkFlags(req)) {
warn("%lli: Request flags do not match! Inst: %#x, checker: %#x",
curTick, unverifiedReq->flags, req->flags);
handleError();
}
}
void
CheckerCPU::translateDataWriteReq(MemReqPtr &req)
{
cpuXC->translateDataWriteReq(req);
if (!unverifiedReq) {
warn("%lli: Request virtual addresses do not match! Inst: N/A, "
"checker: %#x",
curTick, req->vaddr);
return;
} else if (req->vaddr != unverifiedReq->vaddr) {
warn("%lli: Request virtual addresses do not match! Inst: %#x, "
"checker: %#x",
curTick, unverifiedReq->vaddr, req->vaddr);
handleError();
}
req->paddr = unverifiedReq->paddr;
if (checkFlags(req)) {
warn("%lli: Request flags do not match! Inst: %#x, checker: %#x",
curTick, unverifiedReq->flags, req->flags);
handleError();
}
}
bool
CheckerCPU::checkFlags(MemReqPtr &req)
{
// Remove any dynamic flags that don't have to do with the request itself.
unsigned flags = unverifiedReq->flags;
unsigned mask = LOCKED | PHYSICAL | VPTE | ALTMODE | UNCACHEABLE | NO_FAULT;
flags = flags & (mask);
if (flags == req->flags) {
return false;
} else {
return true;
}
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::tick(DynInstPtr &completed_inst)
{
DynInstPtr inst;
// Either check this instruction, or add it to a list of
// instructions waiting to be checked. Instructions must be
// checked in program order, so if a store has committed yet not
// completed, there may be some instructions that are waiting
// behind it that have completed and must be checked.
if (!instList.empty()) {
if (youngestSN < completed_inst->seqNum) {
DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n",
completed_inst->seqNum, completed_inst->readPC());
instList.push_back(completed_inst);
youngestSN = completed_inst->seqNum;
}
if (!instList.front()->isCompleted()) {
return;
} else {
inst = instList.front();
instList.pop_front();
}
} else {
if (!completed_inst->isCompleted()) {
if (youngestSN < completed_inst->seqNum) {
DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n",
completed_inst->seqNum, completed_inst->readPC());
instList.push_back(completed_inst);
youngestSN = completed_inst->seqNum;
}
return;
} else {
if (youngestSN < completed_inst->seqNum) {
inst = completed_inst;
youngestSN = completed_inst->seqNum;
} else {
return;
}
}
}
unverifiedInst = inst;
// Try to check all instructions that are completed, ending if we
// run out of instructions to check or if an instruction is not
// yet completed.
while (1) {
DPRINTF(Checker, "Processing instruction [sn:%lli] PC:%#x.\n",
inst->seqNum, inst->readPC());
unverifiedResult.integer = inst->readIntResult();
unverifiedReq = inst->req;
numCycles++;
Fault fault = NoFault;
// maintain $r0 semantics
cpuXC->setIntReg(ZeroReg, 0);
#ifdef TARGET_ALPHA
cpuXC->setFloatRegDouble(ZeroReg, 0.0);
#endif // TARGET_ALPHA
// Check if any recent PC changes match up with anything we
// expect to happen. This is mostly to check if traps or
// PC-based events have occurred in both the checker and CPU.
if (changedPC) {
DPRINTF(Checker, "Changed PC recently to %#x\n",
cpuXC->readPC());
if (willChangePC) {
if (newPC == cpuXC->readPC()) {
DPRINTF(Checker, "Changed PC matches expected PC\n");
} else {
warn("%lli: Changed PC does not match expected PC, "
"changed: %#x, expected: %#x",
curTick, cpuXC->readPC(), newPC);
handleError();
}
willChangePC = false;
}
changedPC = false;
}
if (changedNextPC) {
DPRINTF(Checker, "Changed NextPC recently to %#x\n",
cpuXC->readNextPC());
changedNextPC = false;
}
// Try to fetch the instruction
#if FULL_SYSTEM
#define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
#else
#define IFETCH_FLAGS(pc) 0
#endif
// set up memory request for instruction fetch
memReq->cmd = Read;
memReq->reset(cpuXC->readPC() & ~3, sizeof(uint32_t),
IFETCH_FLAGS(cpuXC->readPC()));
bool succeeded = translateInstReq(memReq);
if (!succeeded) {
if (inst->getFault() == NoFault) {
// In this case the instruction was not a dummy
// instruction carrying an ITB fault. In the single
// threaded case the ITB should still be able to
// translate this instruction; in the SMT case it's
// possible that its ITB entry was kicked out.
warn("%lli: Instruction PC %#x was not found in the ITB!",
curTick, cpuXC->readPC());
handleError();
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst));
break;
} else {
// The instruction is carrying an ITB fault. Handle
// the fault and see if our results match the CPU on
// the next tick().
fault = inst->getFault();
}
}
if (fault == NoFault) {
cpuXC->mem->read(memReq, machInst);
// keep an instruction count
numInst++;
// decode the instruction
machInst = gtoh(machInst);
// Checks that the instruction matches what we expected it to be.
// Checks both the machine instruction and the PC.
validateInst(inst);
curStaticInst = StaticInst::decode(makeExtMI(machInst,
cpuXC->readPC()));
#if FULL_SYSTEM
cpuXC->setInst(machInst);
#endif // FULL_SYSTEM
fault = inst->getFault();
}
// Either the instruction was a fault and we should process the fault,
// or we should just go ahead execute the instruction. This assumes
// that the instruction is properly marked as a fault.
if (fault == NoFault) {
cpuXC->func_exe_inst++;
if (!inst->isUnverifiable())
fault = curStaticInst->execute(this, NULL);
// Checks to make sure instrution results are correct.
validateExecution(inst);
if (curStaticInst->isLoad()) {
++numLoad;
}
}
if (fault != NoFault) {
#if FULL_SYSTEM
fault->invoke(xcProxy);
willChangePC = true;
newPC = cpuXC->readPC();
DPRINTF(Checker, "Fault, PC is now %#x\n", newPC);
#else // !FULL_SYSTEM
fatal("fault (%d) detected @ PC 0x%08p", fault, cpuXC->readPC());
#endif // FULL_SYSTEM
} else {
#if THE_ISA != MIPS_ISA
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst));
#else
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
cpuXC->setNextPC(cpuXC->readNextNPC());
cpuXC->setNextNPC(cpuXC->readNextNPC() + sizeof(MachInst));
#endif
}
#if FULL_SYSTEM
// @todo: Determine if these should happen only if the
// instruction hasn't faulted. In the SimpleCPU case this may
// not be true, but in the O3 or Ozone case this may be true.
Addr oldpc;
int count = 0;
do {
oldpc = cpuXC->readPC();
system->pcEventQueue.service(xcProxy);
count++;
} while (oldpc != cpuXC->readPC());
if (count > 1) {
willChangePC = true;
newPC = cpuXC->readPC();
DPRINTF(Checker, "PC Event, PC is now %#x\n", newPC);
}
#endif
// @todo: Optionally can check all registers. (Or just those
// that have been modified).
validateState();
// Continue verifying instructions if there's another completed
// instruction waiting to be verified.
if (instList.empty()) {
break;
} else if (instList.front()->isCompleted()) {
inst = instList.front();
instList.pop_front();
} else {
break;
}
}
unverifiedInst = NULL;
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::switchOut(Sampler *s)
{
instList.clear();
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::takeOverFrom(BaseCPU *oldCPU)
{
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::validateInst(DynInstPtr &inst)
{
if (inst->readPC() != cpuXC->readPC()) {
warn("%lli: PCs do not match! Inst: %#x, checker: %#x",
curTick, inst->readPC(), cpuXC->readPC());
if (changedPC) {
warn("%lli: Changed PCs recently, may not be an error",
curTick);
} else {
handleError();
}
}
MachInst mi = static_cast<MachInst>(inst->staticInst->machInst);
if (mi != machInst) {
warn("%lli: Binary instructions do not match! Inst: %#x, "
"checker: %#x",
curTick, mi, machInst);
handleError();
}
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::validateExecution(DynInstPtr &inst)
{
if (inst->numDestRegs()) {
// @todo: Support more destination registers.
if (inst->isUnverifiable()) {
// Unverifiable instructions assume they were executed
// properly by the CPU. Grab the result from the
// instruction and write it to the register.
RegIndex idx = inst->destRegIdx(0);
if (idx < TheISA::FP_Base_DepTag) {
cpuXC->setIntReg(idx, inst->readIntResult());
} else if (idx < TheISA::Fpcr_DepTag) {
cpuXC->setFloatRegInt(idx, inst->readIntResult());
} else {
cpuXC->setMiscReg(idx, inst->readIntResult());
}
} else if (result.integer != inst->readIntResult()) {
warn("%lli: Instruction results do not match! (Results may not "
"actually be integers) Inst: %#x, checker: %#x",
curTick, inst->readIntResult(), result.integer);
handleError();
}
}
if (inst->readNextPC() != cpuXC->readNextPC()) {
warn("%lli: Instruction next PCs do not match! Inst: %#x, "
"checker: %#x",
curTick, inst->readNextPC(), cpuXC->readNextPC());
handleError();
}
// Checking side effect registers can be difficult if they are not
// checked simultaneously with the execution of the instruction.
// This is because other valid instructions may have modified
// these registers in the meantime, and their values are not
// stored within the DynInst.
while (!miscRegIdxs.empty()) {
int misc_reg_idx = miscRegIdxs.front();
miscRegIdxs.pop();
if (inst->xcBase()->readMiscReg(misc_reg_idx) !=
cpuXC->readMiscReg(misc_reg_idx)) {
warn("%lli: Misc reg idx %i (side effect) does not match! "
"Inst: %#x, checker: %#x",
curTick, misc_reg_idx,
inst->xcBase()->readMiscReg(misc_reg_idx),
cpuXC->readMiscReg(misc_reg_idx));
handleError();
}
}
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::validateState()
{
if (updateThisCycle) {
warn("%lli: Instruction PC %#x results didn't match up, copying all "
"registers from main CPU", unverifiedInst->readPC());
// Heavy-weight copying of all registers
cpuXC->copyArchRegs(unverifiedInst->xcBase());
updateThisCycle = false;
}
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::dumpInsts()
{
int num = 0;
InstListIt inst_list_it = --(instList.end());
cprintf("Inst list size: %i\n", instList.size());
while (inst_list_it != instList.end())
{
cprintf("Instruction:%i\n",
num);
cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
"Completed:%i\n",
(*inst_list_it)->readPC(),
(*inst_list_it)->seqNum,
(*inst_list_it)->threadNumber,
(*inst_list_it)->isCompleted());
cprintf("\n");
inst_list_it--;
++num;
}
}
template
class Checker<RefCountingPtr<OzoneDynInst<OzoneImpl> > >;
template
class Checker<RefCountingPtr<AlphaDynInst<AlphaSimpleImpl> > >;