gem5/cpu/exec_context.hh
Steve Reinhardt 5a1eb9049d Support for Serializable non-SimObject things like events.
Can now serialize & unserialize DmaRequestEvents and DmaTransferEvents.
Also support serialize/unserialize of pointers to SimObjects and
other Serializable objects.

arch/alpha/alpha_memory.cc:
arch/alpha/alpha_memory.hh:
arch/alpha/isa_traits.hh:
cpu/exec_context.cc:
cpu/exec_context.hh:
cpu/simple_cpu/simple_cpu.hh:
dev/alpha_access.h:
dev/alpha_console.cc:
dev/alpha_console.hh:
dev/console.cc:
dev/console.hh:
    unserialize() now takes a Checkpoint* instead of an IniFile*.
cpu/simple_cpu/simple_cpu.cc:
    unserialize() now takes a Checkpoint* instead of an IniFile*.
    Put ExecContext in its own section so its _status fields doesn't conflict.
sim/eventq.cc:
sim/eventq.hh:
    unserialize() now takes a Checkpoint* instead of an IniFile*.
    Events get serialized by the event queue only if they're marked
    as AutoSerialize... others are assumed to be serialized by something
    else (e.g. an owning SimObject) or to not matter.
sim/param.cc:
    Shift 'const' in case T is a ptr type.
sim/serialize.cc:
sim/serialize.hh:
    Define Checkpoint object to encapsulate everything you need to know
    about a checkpoint.  Use it to allow lookups of named Serializable
    objects (and SimObjects) during unserialization.
    unserialize() now takes a Checkpoint* instead of an IniFile*.

--HG--
extra : convert_revision : 8e6baab32405f8f548bb67a097b2f713296537a5
2003-10-29 21:45:39 -08:00

366 lines
9.8 KiB
C++

/*
* Copyright (c) 2003 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __EXEC_CONTEXT_HH__
#define __EXEC_CONTEXT_HH__
#include "sim/host.hh"
#include "mem/mem_req.hh"
#include "sim/serialize.hh"
// forward declaration: see functional_memory.hh
class FunctionalMemory;
class PhysicalMemory;
class BaseCPU;
#ifdef FULL_SYSTEM
#include "targetarch/alpha_memory.hh"
class MemoryController;
#include "kern/tru64/kernel_stats.hh"
#include "sim/system.hh"
#else // !FULL_SYSTEM
#include "sim/prog.hh"
#endif // FULL_SYSTEM
//
// The ExecContext object represents a functional context for
// instruction execution. It incorporates everything required for
// architecture-level functional simulation of a single thread.
//
class ExecContext
{
public:
enum Status { Unallocated, Active, Suspended, Halted };
private:
Status _status;
public:
Status status() const { return _status; }
void setStatus(Status new_status);
#ifdef FULL_SYSTEM
public:
KernelStats kernelStats;
#endif
public:
RegFile regs; // correct-path register context
// pointer to CPU associated with this context
BaseCPU *cpu;
// Index of hardware thread context on the CPU that this represents.
int thread_num;
// ID of this context w.r.t. the System or Process object to which
// it belongs. For full-system mode, this is the system CPU ID.
int cpu_id;
#ifdef FULL_SYSTEM
FunctionalMemory *mem;
AlphaItb *itb;
AlphaDtb *dtb;
System *system;
// the following two fields are redundant, since we can always
// look them up through the system pointer, but we'll leave them
// here for now for convenience
MemoryController *memCtrl;
PhysicalMemory *physmem;
#else
Process *process;
FunctionalMemory *mem; // functional storage for process address space
// Address space ID. Note that this is used for TIMING cache
// simulation only; all functional memory accesses should use
// one of the FunctionalMemory pointers above.
short asid;
#endif
/*
* number of executed instructions, for matching with syscall trace
* points in EIO files.
*/
Counter func_exe_insn;
//
// Count failed store conditionals so we can warn of apparent
// application deadlock situations.
unsigned storeCondFailures;
// constructor: initialize context from given process structure
#ifdef FULL_SYSTEM
ExecContext(BaseCPU *_cpu, int _thread_num, System *_system,
AlphaItb *_itb, AlphaDtb *_dtb, FunctionalMemory *_dem);
#else
ExecContext(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid);
ExecContext(BaseCPU *_cpu, int _thread_num, FunctionalMemory *_mem,
int _asid);
#endif
virtual ~ExecContext() {}
virtual void takeOverFrom(ExecContext *oldContext);
void regStats(const std::string &name);
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
#ifdef FULL_SYSTEM
bool validInstAddr(Addr addr) { return true; }
bool validDataAddr(Addr addr) { return true; }
int getInstAsid() { return ITB_ASN_ASN(regs.ipr[TheISA::IPR_ITB_ASN]); }
int getDataAsid() { return DTB_ASN_ASN(regs.ipr[TheISA::IPR_DTB_ASN]); }
Fault translateInstReq(MemReqPtr req)
{
return itb->translate(req);
}
Fault translateDataReadReq(MemReqPtr req)
{
return dtb->translate(req, false);
}
Fault translateDataWriteReq(MemReqPtr req)
{
return dtb->translate(req, true);
}
#else
bool validInstAddr(Addr addr)
{ return process->validInstAddr(addr); }
bool validDataAddr(Addr addr)
{ return process->validDataAddr(addr); }
int getInstAsid() { return asid; }
int getDataAsid() { return asid; }
Fault dummyTranslation(MemReqPtr req)
{
#if 0
assert((req->vaddr >> 48 & 0xffff) == 0);
#endif
// put the asid in the upper 16 bits of the paddr
req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
return No_Fault;
}
Fault translateInstReq(MemReqPtr req)
{
return dummyTranslation(req);
}
Fault translateDataReadReq(MemReqPtr req)
{
return dummyTranslation(req);
}
Fault translateDataWriteReq(MemReqPtr req)
{
return dummyTranslation(req);
}
#endif
template <class T>
Fault read(MemReqPtr req, T& data)
{
#if defined(TARGET_ALPHA) && defined(FULL_SYSTEM)
if (req->flags & LOCKED) {
MiscRegFile *cregs = &req->xc->regs.miscRegs;
cregs->lock_addr = req->paddr;
cregs->lock_flag = true;
}
#endif
return mem->read(req, data);
}
template <class T>
Fault write(MemReqPtr req, T& data)
{
#if defined(TARGET_ALPHA) && defined(FULL_SYSTEM)
MiscRegFile *cregs;
// If this is a store conditional, act appropriately
if (req->flags & LOCKED) {
cregs = &req->xc->regs.miscRegs;
if (req->flags & UNCACHEABLE) {
// Don't update result register (see stq_c in isa_desc)
req->result = 2;
req->xc->storeCondFailures = 0;//Needed? [RGD]
} else {
req->result = cregs->lock_flag;
if (!cregs->lock_flag ||
((cregs->lock_addr & ~0xf) != (req->paddr & ~0xf))) {
cregs->lock_flag = false;
if (((++req->xc->storeCondFailures) % 100000) == 0) {
std::cerr << "Warning: "
<< req->xc->storeCondFailures
<< " consecutive store conditional failures "
<< "on cpu " << req->xc->cpu_id
<< std::endl;
}
return No_Fault;
}
else req->xc->storeCondFailures = 0;
}
}
// Need to clear any locked flags on other proccessors for
// this address. Only do this for succsful Store Conditionals
// and all other stores (WH64?). Unsuccessful Store
// Conditionals would have returned above, and wouldn't fall
// through.
for (int i = 0; i < system->execContexts.size(); i++){
cregs = &system->execContexts[i]->regs.miscRegs;
if ((cregs->lock_addr & ~0xf) == (req->paddr & ~0xf)) {
cregs->lock_flag = false;
}
}
#endif
return mem->write(req, data);
}
virtual bool misspeculating();
//
// New accessors for new decoder.
//
uint64_t readIntReg(int reg_idx)
{
return regs.intRegFile[reg_idx];
}
float readFloatRegSingle(int reg_idx)
{
return (float)regs.floatRegFile.d[reg_idx];
}
double readFloatRegDouble(int reg_idx)
{
return regs.floatRegFile.d[reg_idx];
}
uint64_t readFloatRegInt(int reg_idx)
{
return regs.floatRegFile.q[reg_idx];
}
void setIntReg(int reg_idx, uint64_t val)
{
regs.intRegFile[reg_idx] = val;
}
void setFloatRegSingle(int reg_idx, float val)
{
regs.floatRegFile.d[reg_idx] = (double)val;
}
void setFloatRegDouble(int reg_idx, double val)
{
regs.floatRegFile.d[reg_idx] = val;
}
void setFloatRegInt(int reg_idx, uint64_t val)
{
regs.floatRegFile.q[reg_idx] = val;
}
uint64_t readPC()
{
return regs.pc;
}
void setNextPC(uint64_t val)
{
regs.npc = val;
}
uint64_t readUniq()
{
return regs.miscRegs.uniq;
}
void setUniq(uint64_t val)
{
regs.miscRegs.uniq = val;
}
uint64_t readFpcr()
{
return regs.miscRegs.fpcr;
}
void setFpcr(uint64_t val)
{
regs.miscRegs.fpcr = val;
}
#ifdef FULL_SYSTEM
uint64_t readIpr(int idx, Fault &fault);
Fault setIpr(int idx, uint64_t val);
Fault hwrei();
void ev5_trap(Fault fault);
bool simPalCheck(int palFunc);
#endif
#ifndef FULL_SYSTEM
void syscall()
{
process->syscall(this);
}
#endif
};
// for non-speculative execution context, spec_mode is always false
inline bool
ExecContext::misspeculating()
{
return false;
}
#endif // __EXEC_CONTEXT_HH__