gem5/arch/alpha/isa/mem.isa
Kevin Lim e7825aab59 Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included.
The shadow registers are folded into the normal integer registers to ease renaming indexing.

Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode.

arch/alpha/ev5.cc:
    Changes to automatically map the shadow registers if the instruction is in PAL mode.
arch/alpha/isa/branch.isa:
arch/alpha/isa/decoder.isa:
arch/alpha/isa/fp.isa:
arch/alpha/isa/int.isa:
arch/alpha/isa/mem.isa:
arch/alpha/isa/pal.isa:
arch/alpha/isa/unimp.isa:
    Changes for automatically using the shadow registers.  Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits.
arch/alpha/isa/main.isa:
    Changes for automatically using the shadow registers.  Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits.

    The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode.  If it is, then it refers to the reg_redir table to determine the true index of the register it is using.

    Also include the opcdec instruction definition.
arch/alpha/isa_traits.hh:
    Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not.

    Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers).

    Change the dependence tags to reflect the integer registers include the 8 shadow registers.

    Define function to make an ExtMachInst.  Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU.
arch/isa_parser.py:
    Have static insts decode on the ExtMachInst.
base/remote_gdb.cc:
    Support the automatic remapping of shadow registers.  Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices.
cpu/o3/regfile.hh:
    Comment out the pal registers; they are now a part of the integer registers.
cpu/simple/cpu.cc:
    Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin.
cpu/static_inst.hh:
    Change from MachInst to ExtMachInst to support shadow register renaming.

--HG--
extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 15:28:25 -05:00

703 lines
20 KiB
C++

// -*- mode:c++ -*-
// Copyright (c) 2003-2005 The Regents of The University of Michigan
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
output header {{
/**
* Base class for general Alpha memory-format instructions.
*/
class Memory : public AlphaStaticInst
{
protected:
/// Memory request flags. See mem_req_base.hh.
unsigned memAccessFlags;
/// Pointer to EAComp object.
const StaticInstPtr eaCompPtr;
/// Pointer to MemAcc object.
const StaticInstPtr memAccPtr;
/// Constructor
Memory(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
StaticInstPtr _eaCompPtr = nullStaticInstPtr,
StaticInstPtr _memAccPtr = nullStaticInstPtr)
: AlphaStaticInst(mnem, _machInst, __opClass),
memAccessFlags(0), eaCompPtr(_eaCompPtr), memAccPtr(_memAccPtr)
{
}
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
public:
const StaticInstPtr &eaCompInst() const { return eaCompPtr; }
const StaticInstPtr &memAccInst() const { return memAccPtr; }
};
/**
* Base class for memory-format instructions using a 32-bit
* displacement (i.e. most of them).
*/
class MemoryDisp32 : public Memory
{
protected:
/// Displacement for EA calculation (signed).
int32_t disp;
/// Constructor.
MemoryDisp32(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
StaticInstPtr _eaCompPtr = nullStaticInstPtr,
StaticInstPtr _memAccPtr = nullStaticInstPtr)
: Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr),
disp(MEMDISP)
{
}
};
/**
* Base class for a few miscellaneous memory-format insts
* that don't interpret the disp field: wh64, fetch, fetch_m, ecb.
* None of these instructions has a destination register either.
*/
class MemoryNoDisp : public Memory
{
protected:
/// Constructor
MemoryNoDisp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
StaticInstPtr _eaCompPtr = nullStaticInstPtr,
StaticInstPtr _memAccPtr = nullStaticInstPtr)
: Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr)
{
}
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string
Memory::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return csprintf("%-10s %c%d,%d(r%d)", mnemonic,
flags[IsFloating] ? 'f' : 'r', RA, MEMDISP, RB);
}
std::string
MemoryNoDisp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return csprintf("%-10s (r%d)", mnemonic, RB);
}
}};
def format LoadAddress(code) {{
iop = InstObjParams(name, Name, 'MemoryDisp32', CodeBlock(code))
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
def template LoadStoreDeclare {{
/**
* Static instruction class for "%(mnemonic)s".
*/
class %(class_name)s : public %(base_class)s
{
protected:
/**
* "Fake" effective address computation class for "%(mnemonic)s".
*/
class EAComp : public %(base_class)s
{
public:
/// Constructor
EAComp(ExtMachInst machInst);
%(BasicExecDeclare)s
};
/**
* "Fake" memory access instruction class for "%(mnemonic)s".
*/
class MemAcc : public %(base_class)s
{
public:
/// Constructor
MemAcc(ExtMachInst machInst);
%(BasicExecDeclare)s
};
public:
/// Constructor.
%(class_name)s(ExtMachInst machInst);
%(BasicExecDeclare)s
%(InitiateAccDeclare)s
%(CompleteAccDeclare)s
};
}};
def template InitiateAccDeclare {{
Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
}};
def template CompleteAccDeclare {{
Fault completeAcc(uint8_t *, %(CPU_exec_context)s *, Trace::InstRecord *) const;
}};
def template LoadStoreConstructor {{
/** TODO: change op_class to AddrGenOp or something (requires
* creating new member of OpClass enum in op_class.hh, updating
* config files, etc.). */
inline %(class_name)s::EAComp::EAComp(ExtMachInst machInst)
: %(base_class)s("%(mnemonic)s (EAComp)", machInst, IntAluOp)
{
%(ea_constructor)s;
}
inline %(class_name)s::MemAcc::MemAcc(ExtMachInst machInst)
: %(base_class)s("%(mnemonic)s (MemAcc)", machInst, %(op_class)s)
{
%(memacc_constructor)s;
}
inline %(class_name)s::%(class_name)s(ExtMachInst machInst)
: %(base_class)s("%(mnemonic)s", machInst, %(op_class)s,
new EAComp(machInst), new MemAcc(machInst))
{
%(constructor)s;
}
}};
def template EACompExecute {{
Fault
%(class_name)s::EAComp::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(code)s;
if (fault == NoFault) {
%(op_wb)s;
xc->setEA(EA);
}
return fault;
}
}};
def template LoadMemAccExecute {{
Fault
%(class_name)s::MemAcc::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
EA = xc->getEA();
if (fault == NoFault) {
fault = xc->read(EA, (uint%(mem_acc_size)d_t&)Mem, memAccessFlags);
%(code)s;
}
if (fault == NoFault) {
%(op_wb)s;
}
return fault;
}
}};
def template LoadExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(ea_code)s;
if (fault == NoFault) {
fault = xc->read(EA, (uint%(mem_acc_size)d_t&)Mem, memAccessFlags);
%(memacc_code)s;
}
if (fault == NoFault) {
%(op_wb)s;
}
return fault;
}
}};
def template LoadInitiateAcc {{
Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_src_decl)s;
%(op_rd)s;
%(ea_code)s;
if (fault == NoFault) {
fault = xc->read(EA, (uint%(mem_acc_size)d_t &)Mem, memAccessFlags);
}
return fault;
}
}};
def template LoadCompleteAcc {{
Fault %(class_name)s::completeAcc(uint8_t *data,
%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_src_decl)s;
%(op_dest_decl)s;
memcpy(&Mem, data, sizeof(Mem));
if (fault == NoFault) {
%(memacc_code)s;
}
if (fault == NoFault) {
%(op_wb)s;
}
return fault;
}
}};
def template StoreMemAccExecute {{
Fault
%(class_name)s::MemAcc::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
uint64_t write_result = 0;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
EA = xc->getEA();
if (fault == NoFault) {
%(code)s;
}
if (fault == NoFault) {
fault = xc->write((uint%(mem_acc_size)d_t&)Mem, EA,
memAccessFlags, &write_result);
if (traceData) { traceData->setData(Mem); }
}
if (fault == NoFault) {
%(postacc_code)s;
}
if (fault == NoFault) {
%(op_wb)s;
}
return fault;
}
}};
def template StoreExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
uint64_t write_result = 0;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(ea_code)s;
if (fault == NoFault) {
%(memacc_code)s;
}
if (fault == NoFault) {
fault = xc->write((uint%(mem_acc_size)d_t&)Mem, EA,
memAccessFlags, &write_result);
if (traceData) { traceData->setData(Mem); }
}
if (fault == NoFault) {
%(postacc_code)s;
}
if (fault == NoFault) {
%(op_wb)s;
}
return fault;
}
}};
def template StoreInitiateAcc {{
Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
uint64_t write_result = 0;
%(fp_enable_check)s;
%(op_src_decl)s;
%(op_dest_decl)s;
%(op_rd)s;
%(ea_code)s;
if (fault == NoFault) {
%(memacc_code)s;
}
if (fault == NoFault) {
fault = xc->write((uint%(mem_acc_size)d_t&)Mem, EA,
memAccessFlags, &write_result);
if (traceData) { traceData->setData(Mem); }
}
return fault;
}
}};
def template StoreCompleteAcc {{
Fault %(class_name)s::completeAcc(uint8_t *data,
%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
uint64_t write_result = 0;
%(fp_enable_check)s;
%(op_dest_decl)s;
memcpy(&write_result, data, sizeof(write_result));
if (fault == NoFault) {
%(postacc_code)s;
}
if (fault == NoFault) {
%(op_wb)s;
}
return fault;
}
}};
def template MiscMemAccExecute {{
Fault %(class_name)s::MemAcc::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
EA = xc->getEA();
if (fault == NoFault) {
%(code)s;
}
return NoFault;
}
}};
def template MiscExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(ea_code)s;
if (fault == NoFault) {
%(memacc_code)s;
}
return NoFault;
}
}};
def template MiscInitiateAcc {{
Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
panic("Misc instruction does not support split access method!");
return NoFault;
}
}};
def template MiscCompleteAcc {{
Fault %(class_name)s::completeAcc(uint8_t *data,
%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
panic("Misc instruction does not support split access method!");
return NoFault;
}
}};
// load instructions use Ra as dest, so check for
// Ra == 31 to detect nops
def template LoadNopCheckDecode {{
{
AlphaStaticInst *i = new %(class_name)s(machInst);
if (RA == 31) {
i = makeNop(i);
}
return i;
}
}};
// for some load instructions, Ra == 31 indicates a prefetch (not a nop)
def template LoadPrefetchCheckDecode {{
{
if (RA != 31) {
return new %(class_name)s(machInst);
}
else {
return new %(class_name)sPrefetch(machInst);
}
}
}};
let {{
def LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
postacc_code = '', base_class = 'MemoryDisp32',
decode_template = BasicDecode, exec_template_base = ''):
# Make sure flags are in lists (convert to lists if not).
mem_flags = makeList(mem_flags)
inst_flags = makeList(inst_flags)
# add hook to get effective addresses into execution trace output.
ea_code += '\nif (traceData) { traceData->setAddr(EA); }\n'
# generate code block objects
ea_cblk = CodeBlock(ea_code)
memacc_cblk = CodeBlock(memacc_code)
postacc_cblk = CodeBlock(postacc_code)
# Some CPU models execute the memory operation as an atomic unit,
# while others want to separate them into an effective address
# computation and a memory access operation. As a result, we need
# to generate three StaticInst objects. Note that the latter two
# are nested inside the larger "atomic" one.
# generate InstObjParams for EAComp object
ea_iop = InstObjParams(name, Name, base_class, ea_cblk, inst_flags)
# generate InstObjParams for MemAcc object
memacc_iop = InstObjParams(name, Name, base_class, memacc_cblk, inst_flags)
# in the split execution model, the MemAcc portion is responsible
# for the post-access code.
memacc_iop.postacc_code = postacc_cblk.code
# generate InstObjParams for InitiateAcc, CompleteAcc object
# The code used depends on the template being used
if (exec_template_base == 'Load'):
initiateacc_cblk = CodeBlock(ea_code + memacc_code)
completeacc_cblk = CodeBlock(memacc_code + postacc_code)
elif (exec_template_base == 'Store'):
initiateacc_cblk = CodeBlock(ea_code + memacc_code)
completeacc_cblk = CodeBlock(postacc_code)
else:
initiateacc_cblk = ''
completeacc_cblk = ''
initiateacc_iop = InstObjParams(name, Name, base_class, initiateacc_cblk,
inst_flags)
completeacc_iop = InstObjParams(name, Name, base_class, completeacc_cblk,
inst_flags)
if (exec_template_base == 'Load'):
initiateacc_iop.ea_code = ea_cblk.code
initiateacc_iop.memacc_code = memacc_cblk.code
completeacc_iop.memacc_code = memacc_cblk.code
completeacc_iop.postacc_code = postacc_cblk.code
elif (exec_template_base == 'Store'):
initiateacc_iop.ea_code = ea_cblk.code
initiateacc_iop.memacc_code = memacc_cblk.code
completeacc_iop.postacc_code = postacc_cblk.code
# generate InstObjParams for unified execution
cblk = CodeBlock(ea_code + memacc_code + postacc_code)
iop = InstObjParams(name, Name, base_class, cblk, inst_flags)
iop.ea_constructor = ea_cblk.constructor
iop.ea_code = ea_cblk.code
iop.memacc_constructor = memacc_cblk.constructor
iop.memacc_code = memacc_cblk.code
iop.postacc_code = postacc_cblk.code
if mem_flags:
s = '\n\tmemAccessFlags = ' + string.join(mem_flags, '|') + ';'
iop.constructor += s
memacc_iop.constructor += s
# select templates
memAccExecTemplate = eval(exec_template_base + 'MemAccExecute')
fullExecTemplate = eval(exec_template_base + 'Execute')
initiateAccTemplate = eval(exec_template_base + 'InitiateAcc')
completeAccTemplate = eval(exec_template_base + 'CompleteAcc')
# (header_output, decoder_output, decode_block, exec_output)
return (LoadStoreDeclare.subst(iop), LoadStoreConstructor.subst(iop),
decode_template.subst(iop),
EACompExecute.subst(ea_iop)
+ memAccExecTemplate.subst(memacc_iop)
+ fullExecTemplate.subst(iop)
+ initiateAccTemplate.subst(initiateacc_iop)
+ completeAccTemplate.subst(completeacc_iop))
}};
def format LoadOrNop(memacc_code, ea_code = {{ EA = Rb + disp; }},
mem_flags = [], inst_flags = []) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
decode_template = LoadNopCheckDecode,
exec_template_base = 'Load')
}};
// Note that the flags passed in apply only to the prefetch version
def format LoadOrPrefetch(memacc_code, ea_code = {{ EA = Rb + disp; }},
mem_flags = [], pf_flags = [], inst_flags = []) {{
# declare the load instruction object and generate the decode block
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
decode_template = LoadPrefetchCheckDecode,
exec_template_base = 'Load')
# Declare the prefetch instruction object.
# Make sure flag args are lists so we can mess with them.
mem_flags = makeList(mem_flags)
pf_flags = makeList(pf_flags)
inst_flags = makeList(inst_flags)
pf_mem_flags = mem_flags + pf_flags + ['NO_FAULT']
pf_inst_flags = inst_flags + ['IsMemRef', 'IsLoad',
'IsDataPrefetch', 'MemReadOp']
(pf_header_output, pf_decoder_output, _, pf_exec_output) = \
LoadStoreBase(name, Name + 'Prefetch', ea_code,
'xc->prefetch(EA, memAccessFlags);',
pf_mem_flags, pf_inst_flags, exec_template_base = 'Misc')
header_output += pf_header_output
decoder_output += pf_decoder_output
exec_output += pf_exec_output
}};
def format Store(memacc_code, ea_code = {{ EA = Rb + disp; }},
mem_flags = [], inst_flags = []) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
exec_template_base = 'Store')
}};
def format StoreCond(memacc_code, postacc_code,
ea_code = {{ EA = Rb + disp; }},
mem_flags = [], inst_flags = []) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
postacc_code, exec_template_base = 'Store')
}};
// Use 'MemoryNoDisp' as base: for wh64, fetch, ecb
def format MiscPrefetch(ea_code, memacc_code,
mem_flags = [], inst_flags = []) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
base_class = 'MemoryNoDisp', exec_template_base = 'Misc')
}};