gem5/src/cpu/kvm/vm.cc
Andreas Sandberg 599b59b387 kvm: Initial x86 support
This changeset adds support for KVM on x86. Full support is split
across a number of commits since some features are relatively
complex. This changeset includes support for:

 * Integer state synchronization (including segment regs)
 * CPUID (gem5's CPUID values are inserted into KVM)
 * x86 legacy IO (remapped and handled by gem5's memory system)
 * Memory mapped IO
 * PCI
 * MSRs
 * State dumping

Most of the functionality is fairly straight forward. There are some
quirks to support PCI enumerations since this is done in the TLB(!) in
the simulated CPUs. We currently replicate some of that code.

Unlike the ARM implementation, the x86 implementation of the virtual
CPU does not use the cycles hardware counter. KVM on x86 simulates the
time stamp counter (TSC) in the kernel. If we just measure host cycles
using perfevent, we might end up measuring a slightly different number
of cycles. If we don't get the cycle accounting right, we might end up
rewinding the TSC, with all kinds of chaos as a result.

An additional feature of the KVM CPU on x86 is extended state
dumping. This enables Python scripts controlling the simulator to
request dumping of a subset of the processor state. The following
methods are currenlty supported:

 * dumpFpuRegs
 * dumpIntRegs
 * dumpSpecRegs
 * dumpDebugRegs
 * dumpXCRs
 * dumpXSave
 * dumpVCpuEvents
 * dumpMSRs

Known limitations:
  * M5 ops are currently not supported.
  * FPU synchronization is not supported (only affects CPU switching).

Both of the limitations will be addressed in separate commits.
2013-09-25 12:24:26 +02:00

467 lines
11 KiB
C++

/*
* Copyright (c) 2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Andreas Sandberg
*/
#include <linux/kvm.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <cerrno>
#include <memory>
#include "cpu/kvm/vm.hh"
#include "debug/Kvm.hh"
#include "params/KvmVM.hh"
#include "sim/system.hh"
#define EXPECTED_KVM_API_VERSION 12
#if EXPECTED_KVM_API_VERSION != KVM_API_VERSION
#error Unsupported KVM version
#endif
Kvm *Kvm::instance = NULL;
Kvm::Kvm()
: kvmFD(-1), apiVersion(-1), vcpuMMapSize(0)
{
kvmFD = ::open("/dev/kvm", O_RDWR);
if (kvmFD == -1)
fatal("KVM: Failed to open /dev/kvm\n");
apiVersion = ioctl(KVM_GET_API_VERSION);
if (apiVersion != EXPECTED_KVM_API_VERSION)
fatal("KVM: Incompatible API version\n");
vcpuMMapSize = ioctl(KVM_GET_VCPU_MMAP_SIZE);
if (vcpuMMapSize == -1)
panic("KVM: Failed to get virtual CPU MMAP size\n");
}
Kvm::~Kvm()
{
close(kvmFD);
}
Kvm *
Kvm::create()
{
if (!instance)
instance = new Kvm();
return instance;
}
bool
Kvm::capUserMemory() const
{
return checkExtension(KVM_CAP_USER_MEMORY) != 0;
}
bool
Kvm::capSetTSSAddress() const
{
return checkExtension(KVM_CAP_SET_TSS_ADDR) != 0;
}
bool
Kvm::capExtendedCPUID() const
{
return checkExtension(KVM_CAP_EXT_CPUID) != 0;
}
bool
Kvm::capUserNMI() const
{
#ifdef KVM_CAP_USER_NMI
return checkExtension(KVM_CAP_USER_NMI) != 0;
#else
return false;
#endif
}
int
Kvm::capCoalescedMMIO() const
{
return checkExtension(KVM_CAP_COALESCED_MMIO);
}
bool
Kvm::capOneReg() const
{
#ifdef KVM_CAP_ONE_REG
return checkExtension(KVM_CAP_ONE_REG) != 0;
#else
return false;
#endif
}
bool
Kvm::capIRQChip() const
{
return checkExtension(KVM_CAP_IRQCHIP) != 0;
}
bool
Kvm::capVCPUEvents() const
{
#ifdef KVM_CAP_VCPU_EVENTS
return checkExtension(KVM_CAP_VCPU_EVENTS) != 0;
#else
return false;
#endif
}
bool
Kvm::capDebugRegs() const
{
#ifdef KVM_CAP_DEBUGREGS
return checkExtension(KVM_CAP_DEBUGREGS) != 0;
#else
return false;
#endif
}
bool
Kvm::capXCRs() const
{
#ifdef KVM_CAP_XCRS
return checkExtension(KVM_CAP_XCRS) != 0;
#else
return false;
#endif
}
bool
Kvm::capXSave() const
{
#ifdef KVM_CAP_XSAVE
return checkExtension(KVM_CAP_XSAVE) != 0;
#else
return false;
#endif
}
bool
Kvm::getSupportedCPUID(struct kvm_cpuid2 &cpuid) const
{
#if defined(__i386__) || defined(__x86_64__)
if (ioctl(KVM_GET_SUPPORTED_CPUID, (void *)&cpuid) == -1) {
if (errno == E2BIG)
return false;
else
panic("KVM: Failed to get supported CPUID (errno: %i)\n", errno);
} else
return true;
#else
panic("KVM: getSupportedCPUID is unsupported on this platform.\n");
#endif
}
const Kvm::CPUIDVector &
Kvm::getSupportedCPUID() const
{
if (supportedCPUIDCache.empty()) {
std::unique_ptr<struct kvm_cpuid2> cpuid;
int i(1);
do {
cpuid.reset((struct kvm_cpuid2 *)operator new(
sizeof(kvm_cpuid2) + i * sizeof(kvm_cpuid_entry2)));
cpuid->nent = i;
++i;
} while (!getSupportedCPUID(*cpuid));
supportedCPUIDCache.assign(cpuid->entries,
cpuid->entries + cpuid->nent);
}
return supportedCPUIDCache;
}
bool
Kvm::getSupportedMSRs(struct kvm_msr_list &msrs) const
{
#if defined(__i386__) || defined(__x86_64__)
if (ioctl(KVM_GET_MSR_INDEX_LIST, (void *)&msrs) == -1) {
if (errno == E2BIG)
return false;
else
panic("KVM: Failed to get supported CPUID (errno: %i)\n", errno);
} else
return true;
#else
panic("KVM: getSupportedCPUID is unsupported on this platform.\n");
#endif
}
const Kvm::MSRIndexVector &
Kvm::getSupportedMSRs() const
{
if (supportedMSRCache.empty()) {
std::unique_ptr<struct kvm_msr_list> msrs;
int i(0);
do {
msrs.reset((struct kvm_msr_list *)operator new(
sizeof(kvm_msr_list) + i * sizeof(uint32_t)));
msrs->nmsrs = i;
++i;
} while (!getSupportedMSRs(*msrs));
supportedMSRCache.assign(msrs->indices, msrs->indices + msrs->nmsrs);
}
return supportedMSRCache;
}
int
Kvm::checkExtension(int extension) const
{
int ret = ioctl(KVM_CHECK_EXTENSION, extension);
if (ret == -1)
panic("KVM: ioctl failed when checking for extension\n");
return ret;
}
int
Kvm::ioctl(int request, long p1) const
{
assert(kvmFD != -1);
return ::ioctl(kvmFD, request, p1);
}
int
Kvm::createVM()
{
int vmFD;
vmFD = ioctl(KVM_CREATE_VM);
if (vmFD == -1)
panic("Failed to create KVM VM\n");
return vmFD;
}
KvmVM::KvmVM(KvmVMParams *params)
: SimObject(params),
kvm(), system(params->system),
vmFD(kvm.createVM()),
started(false),
nextVCPUID(0)
{
/* Setup the coalesced MMIO regions */
for (int i = 0; i < params->coalescedMMIO.size(); ++i)
coalesceMMIO(params->coalescedMMIO[i]);
}
KvmVM::~KvmVM()
{
close(vmFD);
}
void
KvmVM::cpuStartup()
{
if (started)
return;
started = true;
delayedStartup();
}
void
KvmVM::delayedStartup()
{
const std::vector<std::pair<AddrRange, uint8_t*> >&memories(
system->getPhysMem().getBackingStore());
DPRINTF(Kvm, "Mapping %i memory region(s)\n", memories.size());
for (int slot(0); slot < memories.size(); ++slot) {
const AddrRange &range(memories[slot].first);
void *pmem(memories[slot].second);
if (pmem) {
DPRINTF(Kvm, "Mapping region: 0x%p -> 0x%llx [size: 0x%llx]\n",
pmem, range.start(), range.size());
setUserMemoryRegion(slot, pmem, range, 0 /* flags */);
} else {
DPRINTF(Kvm, "Zero-region not mapped: [0x%llx]\n", range.start());
hack("KVM: Zero memory handled as IO\n");
}
}
}
void
KvmVM::setUserMemoryRegion(uint32_t slot,
void *host_addr, AddrRange guest_range,
uint32_t flags)
{
if (guest_range.interleaved())
panic("Tried to map an interleaved memory range into a KVM VM.\n");
setUserMemoryRegion(slot, host_addr,
guest_range.start(), guest_range.size(),
flags);
}
void
KvmVM::setUserMemoryRegion(uint32_t slot,
void *host_addr, Addr guest_addr,
uint64_t len, uint32_t flags)
{
struct kvm_userspace_memory_region m;
memset(&m, 0, sizeof(m));
m.slot = slot;
m.flags = flags;
m.guest_phys_addr = (uint64_t)guest_addr;
m.memory_size = len;
m.userspace_addr = (__u64)host_addr;
if (ioctl(KVM_SET_USER_MEMORY_REGION, (void *)&m) == -1) {
panic("Failed to setup KVM memory region:\n"
"\tHost Address: 0x%p\n"
"\tGuest Address: 0x%llx\n",
"\tSize: %ll\n",
"\tFlags: 0x%x\n",
m.userspace_addr, m.guest_phys_addr,
m.memory_size, m.flags);
}
}
void
KvmVM::coalesceMMIO(const AddrRange &range)
{
coalesceMMIO(range.start(), range.size());
}
void
KvmVM::coalesceMMIO(Addr start, int size)
{
struct kvm_coalesced_mmio_zone zone;
zone.addr = start;
zone.size = size;
zone.pad = 0;
DPRINTF(Kvm, "KVM: Registering coalesced MMIO region [0x%x, 0x%x]\n",
zone.addr, zone.addr + zone.size - 1);
if (ioctl(KVM_REGISTER_COALESCED_MMIO, (void *)&zone) == -1)
panic("KVM: Failed to register coalesced MMIO region (%i)\n",
errno);
}
void
KvmVM::setTSSAddress(Addr tss_address)
{
if (ioctl(KVM_SET_TSS_ADDR, (unsigned long)tss_address) == -1)
panic("KVM: Failed to set VM TSS address\n");
}
void
KvmVM::createIRQChip()
{
if (_hasKernelIRQChip)
panic("KvmVM::createIRQChip called twice.\n");
if (ioctl(KVM_CREATE_IRQCHIP) != -1) {
_hasKernelIRQChip = true;
} else {
warn("KVM: Failed to create in-kernel IRQ chip (errno: %i)\n",
errno);
_hasKernelIRQChip = false;
}
}
void
KvmVM::setIRQLine(uint32_t irq, bool high)
{
struct kvm_irq_level kvm_level;
kvm_level.irq = irq;
kvm_level.level = high ? 1 : 0;
if (ioctl(KVM_IRQ_LINE, &kvm_level) == -1)
panic("KVM: Failed to set IRQ line level (errno: %i)\n",
errno);
}
int
KvmVM::createVCPU(long vcpuID)
{
int fd;
fd = ioctl(KVM_CREATE_VCPU, vcpuID);
if (fd == -1)
panic("KVM: Failed to create virtual CPU");
return fd;
}
long
KvmVM::allocVCPUID()
{
return nextVCPUID++;
}
int
KvmVM::ioctl(int request, long p1) const
{
assert(vmFD != -1);
return ::ioctl(vmFD, request, p1);
}
KvmVM *
KvmVMParams::create()
{
static bool created = false;
if (created)
warn_once("Use of multiple KvmVMs is currently untested!\n");
created = true;
return new KvmVM(this);
}