70b35bab57
They are now accessed by calling readMiscReg()/setMiscReg() on the XC. Old IPR accesses are supported by using readMiscRegWithEffect() and setMiscRegWithEffect() (names may change in the future). arch/alpha/alpha_memory.cc: Change accesses to IPR to go through the XC. arch/alpha/ev5.cc: Change accesses for IPRs to go through the misc regs. arch/alpha/isa/decoder.isa: Change accesses to IPRs to go through the misc regs. readIpr() and setIpr() are now changed to calls to readMiscRegWithEffect() and setMiscRegWithEffect(). arch/alpha/isa/fp.isa: Change accesses to IPRs and Fpcr to go through the misc regs. arch/alpha/isa/main.isa: Add support for all misc regs being accessed through readMiscReg() and setMiscReg(). Instead of readUniq and readFpcr, they are replaced by calls with Uniq_DepTag and Fpcr_DepTag passed in as the register index. arch/alpha/isa_traits.hh: Change the MiscRegFile to a class that handles all accesses to MiscRegs, which in Alpha include the FPCR, Uniq, Lock Addr, Lock Flag, and IPRs. Two flavors of accesses are supported: normal register reads/writes, and reads/writes with effect. The latter are basically the original read/write IPR functions, while the former are normal reads/writes. The lock flag and lock addr registers are added to the dependence tags in order to support being accessed through the misc regs. arch/alpha/stacktrace.cc: cpu/simple/cpu.cc: dev/sinic.cc: Change accesses to the IPRs to go through the XC. arch/alpha/vtophys.cc: Change access to the IPR to go through the XC. arch/isa_parser.py: Change generation of code for control registers to use the readMiscReg and setMiscReg functions. base/remote_gdb.cc: Change accesses to the IPR to go through the XC. cpu/exec_context.hh: Use the miscRegs to access the lock addr, lock flag, and other misc registers. cpu/o3/alpha_cpu.hh: cpu/simple/cpu.hh: Support interface for reading and writing misc registers, which replaces readUniq, readFpcr, readIpr, and their set functions. cpu/o3/alpha_cpu_impl.hh: Change accesses to the IPRs to go through the miscRegs. For now comment out some of the accesses to the misc regs until the proxy exec context is completed. cpu/o3/alpha_dyn_inst.hh: Change accesses to misc regs to use readMiscReg and setMiscReg. cpu/o3/alpha_dyn_inst_impl.hh: Remove old misc reg accessors. cpu/o3/cpu.cc: Comment out old misc reg accesses until the proxy exec context is completed. cpu/o3/cpu.hh: Change accesses to the misc regs. cpu/o3/regfile.hh: Remove old access methods for the misc regs, replace them with readMiscReg and setMiscReg. They are dummy functions for now until the proxy exec context is completed. kern/kernel_stats.cc: kern/system_events.cc: Have accesses to the IPRs go through the XC. kern/tru64/tru64.hh: Have accesses to the misc regs use the new access methods. --HG-- extra : convert_revision : e32e0a3fe99522e17294bbe106ff5591cb1a9d76
252 lines
7.9 KiB
C++
252 lines
7.9 KiB
C++
/*
|
|
* Copyright (c) 2004-2005 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __CPU_O3_CPU_ALPHA_DYN_INST_HH__
|
|
#define __CPU_O3_CPU_ALPHA_DYN_INST_HH__
|
|
|
|
#include "cpu/base_dyn_inst.hh"
|
|
#include "cpu/o3/alpha_cpu.hh"
|
|
#include "cpu/o3/alpha_impl.hh"
|
|
#include "cpu/inst_seq.hh"
|
|
|
|
/**
|
|
* Mostly implementation specific AlphaDynInst. It is templated in case there
|
|
* are other implementations that are similar enough to be able to use this
|
|
* class without changes. This is mainly useful if there are multiple similar
|
|
* CPU implementations of the same ISA.
|
|
*/
|
|
|
|
template <class Impl>
|
|
class AlphaDynInst : public BaseDynInst<Impl>
|
|
{
|
|
public:
|
|
/** Typedef for the CPU. */
|
|
typedef typename Impl::FullCPU FullCPU;
|
|
|
|
/** Binary machine instruction type. */
|
|
typedef TheISA::MachInst MachInst;
|
|
/** Logical register index type. */
|
|
typedef TheISA::RegIndex RegIndex;
|
|
/** Integer register index type. */
|
|
typedef TheISA::IntReg IntReg;
|
|
/** Misc register index type. */
|
|
typedef TheISA::MiscReg MiscReg;
|
|
|
|
enum {
|
|
MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
|
|
MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
|
|
};
|
|
|
|
public:
|
|
/** BaseDynInst constructor given a binary instruction. */
|
|
AlphaDynInst(MachInst inst, Addr PC, Addr Pred_PC, InstSeqNum seq_num,
|
|
FullCPU *cpu);
|
|
|
|
/** BaseDynInst constructor given a static inst pointer. */
|
|
AlphaDynInst(StaticInstPtr &_staticInst);
|
|
|
|
/** Executes the instruction.*/
|
|
Fault execute()
|
|
{
|
|
return this->fault = this->staticInst->execute(this, this->traceData);
|
|
}
|
|
|
|
public:
|
|
MiscReg readMiscReg(int misc_reg)
|
|
{
|
|
// Dummy function for now.
|
|
// @todo: Fix this once reg file gets fixed.
|
|
return 0;
|
|
}
|
|
|
|
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
|
|
{
|
|
// Dummy function for now.
|
|
// @todo: Fix this once reg file gets fixed.
|
|
return 0;
|
|
}
|
|
|
|
Fault setMiscReg(int misc_reg, const MiscReg &val)
|
|
{
|
|
// Dummy function for now.
|
|
// @todo: Fix this once reg file gets fixed.
|
|
return NoFault;
|
|
}
|
|
|
|
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val)
|
|
{
|
|
// Dummy function for now.
|
|
// @todo: Fix this once reg file gets fixed.
|
|
return NoFault;
|
|
}
|
|
|
|
#if FULL_SYSTEM
|
|
Fault hwrei();
|
|
int readIntrFlag();
|
|
void setIntrFlag(int val);
|
|
bool inPalMode();
|
|
void trap(Fault fault);
|
|
bool simPalCheck(int palFunc);
|
|
#else
|
|
void syscall();
|
|
#endif
|
|
|
|
|
|
|
|
private:
|
|
/** Physical register index of the destination registers of this
|
|
* instruction.
|
|
*/
|
|
PhysRegIndex _destRegIdx[MaxInstDestRegs];
|
|
|
|
/** Physical register index of the source registers of this
|
|
* instruction.
|
|
*/
|
|
PhysRegIndex _srcRegIdx[MaxInstSrcRegs];
|
|
|
|
/** Physical register index of the previous producers of the
|
|
* architected destinations.
|
|
*/
|
|
PhysRegIndex _prevDestRegIdx[MaxInstDestRegs];
|
|
|
|
public:
|
|
|
|
// The register accessor methods provide the index of the
|
|
// instruction's operand (e.g., 0 or 1), not the architectural
|
|
// register index, to simplify the implementation of register
|
|
// renaming. We find the architectural register index by indexing
|
|
// into the instruction's own operand index table. Note that a
|
|
// raw pointer to the StaticInst is provided instead of a
|
|
// ref-counted StaticInstPtr to redice overhead. This is fine as
|
|
// long as these methods don't copy the pointer into any long-term
|
|
// storage (which is pretty hard to imagine they would have reason
|
|
// to do).
|
|
|
|
uint64_t readIntReg(const StaticInst *si, int idx)
|
|
{
|
|
return this->cpu->readIntReg(_srcRegIdx[idx]);
|
|
}
|
|
|
|
float readFloatRegSingle(const StaticInst *si, int idx)
|
|
{
|
|
return this->cpu->readFloatRegSingle(_srcRegIdx[idx]);
|
|
}
|
|
|
|
double readFloatRegDouble(const StaticInst *si, int idx)
|
|
{
|
|
return this->cpu->readFloatRegDouble(_srcRegIdx[idx]);
|
|
}
|
|
|
|
uint64_t readFloatRegInt(const StaticInst *si, int idx)
|
|
{
|
|
return this->cpu->readFloatRegInt(_srcRegIdx[idx]);
|
|
}
|
|
|
|
/** @todo: Make results into arrays so they can handle multiple dest
|
|
* registers.
|
|
*/
|
|
void setIntReg(const StaticInst *si, int idx, uint64_t val)
|
|
{
|
|
this->cpu->setIntReg(_destRegIdx[idx], val);
|
|
this->instResult.integer = val;
|
|
}
|
|
|
|
void setFloatRegSingle(const StaticInst *si, int idx, float val)
|
|
{
|
|
this->cpu->setFloatRegSingle(_destRegIdx[idx], val);
|
|
this->instResult.fp = val;
|
|
}
|
|
|
|
void setFloatRegDouble(const StaticInst *si, int idx, double val)
|
|
{
|
|
this->cpu->setFloatRegDouble(_destRegIdx[idx], val);
|
|
this->instResult.dbl = val;
|
|
}
|
|
|
|
void setFloatRegInt(const StaticInst *si, int idx, uint64_t val)
|
|
{
|
|
this->cpu->setFloatRegInt(_destRegIdx[idx], val);
|
|
this->instResult.integer = val;
|
|
}
|
|
|
|
/** Returns the physical register index of the i'th destination
|
|
* register.
|
|
*/
|
|
PhysRegIndex renamedDestRegIdx(int idx) const
|
|
{
|
|
return _destRegIdx[idx];
|
|
}
|
|
|
|
/** Returns the physical register index of the i'th source register. */
|
|
PhysRegIndex renamedSrcRegIdx(int idx) const
|
|
{
|
|
return _srcRegIdx[idx];
|
|
}
|
|
|
|
/** Returns the physical register index of the previous physical register
|
|
* that remapped to the same logical register index.
|
|
*/
|
|
PhysRegIndex prevDestRegIdx(int idx) const
|
|
{
|
|
return _prevDestRegIdx[idx];
|
|
}
|
|
|
|
/** Renames a destination register to a physical register. Also records
|
|
* the previous physical register that the logical register mapped to.
|
|
*/
|
|
void renameDestReg(int idx,
|
|
PhysRegIndex renamed_dest,
|
|
PhysRegIndex previous_rename)
|
|
{
|
|
_destRegIdx[idx] = renamed_dest;
|
|
_prevDestRegIdx[idx] = previous_rename;
|
|
}
|
|
|
|
/** Renames a source logical register to the physical register which
|
|
* has/will produce that logical register's result.
|
|
* @todo: add in whether or not the source register is ready.
|
|
*/
|
|
void renameSrcReg(int idx, PhysRegIndex renamed_src)
|
|
{
|
|
_srcRegIdx[idx] = renamed_src;
|
|
}
|
|
|
|
public:
|
|
Fault calcEA()
|
|
{
|
|
return this->staticInst->eaCompInst()->execute(this, this->traceData);
|
|
}
|
|
|
|
Fault memAccess()
|
|
{
|
|
return this->staticInst->memAccInst()->execute(this, this->traceData);
|
|
}
|
|
};
|
|
|
|
#endif // __CPU_O3_CPU_ALPHA_DYN_INST_HH__
|
|
|