gem5/system/alpha/palcode/platform.S
2011-02-16 00:34:01 -06:00

2337 lines
73 KiB
ArmAsm

/*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* Copyright (c) 1993 Hewlett-Packard Development Company
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali G. Saidi
* Nathan L. Binkert
*/
#define max_cpuid 1
#define hw_rei_spe hw_rei
#include "ev5_defs.h"
#include "ev5_impure.h"
#include "ev5_alpha_defs.h"
#include "ev5_paldef.h"
#include "ev5_osfalpha_defs.h"
#include "fromHudsonMacros.h"
#include "fromHudsonOsf.h"
#include "dc21164FromGasSources.h"
#include "cserve.h"
#include "tlaser.h"
#define pt_entInt pt_entint
#define pt_entArith pt_entarith
#define mchk_size ((mchk_cpu_base + 7 + 8) &0xfff8)
#define mchk_flag CNS_Q_FLAG
#define mchk_sys_base 56
#define mchk_cpu_base (CNS_Q_LD_LOCK + 8)
#define mchk_offsets CNS_Q_EXC_ADDR
#define mchk_mchk_code 8
#define mchk_ic_perr_stat CNS_Q_ICPERR_STAT
#define mchk_dc_perr_stat CNS_Q_DCPERR_STAT
#define mchk_sc_addr CNS_Q_SC_ADDR
#define mchk_sc_stat CNS_Q_SC_STAT
#define mchk_ei_addr CNS_Q_EI_ADDR
#define mchk_bc_tag_addr CNS_Q_BC_TAG_ADDR
#define mchk_fill_syn CNS_Q_FILL_SYN
#define mchk_ei_stat CNS_Q_EI_STAT
#define mchk_exc_addr CNS_Q_EXC_ADDR
#define mchk_ld_lock CNS_Q_LD_LOCK
#define osfpcb_q_Ksp pcb_q_ksp
#define pal_impure_common_size ((0x200 + 7) & 0xfff8)
#if defined(BIG_TSUNAMI)
#define MAXPROC 0x3f
#define IPIQ_addr 0x800
#define IPIQ_shift 0
#define IPIR_addr 0x840
#define IPIR_shift 0
#define RTC_addr 0x880
#define RTC_shift 0
#define DIR_addr 0xa2
#elif defined(TSUNAMI)
#define MAXPROC 0x3
#define IPIQ_addr 0x080
#define IPIQ_shift 12
#define IPIR_addr 0x080
#define IPIR_shift 8
#define RTC_addr 0x080
#define RTC_shift 4
#define DIR_addr 0xa0
#elif defined(TLASER)
#define MAXPROC 0xf
#else
#error Must define BIG_TSUNAMI, TSUNAMI, or TLASER
#endif
#define ALIGN_BLOCK \
.align 5
#define ALIGN_BRANCH \
.align 3
#define EXPORT(_x) \
.align 5; \
.globl _x; \
_x:
// XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
// XXX the following is 'made up'
// XXX bugnion
// XXX bugnion not sure how to align 'quad'
#define ALIGN_QUAD \
.align 3
#define ALIGN_128 \
.align 7
#define GET_IMPURE(_r) mfpr _r,pt_impure
#define GET_ADDR(_r1,_off,_r2) lda _r1,_off(_r2)
#define BIT(_x) (1<<(_x))
// System specific code - beh model version
//
//
// Entry points
// SYS_CFLUSH - Cache flush
// SYS_CSERVE - Console service
// SYS_WRIPIR - interprocessor interrupts
// SYS_HALT_INTERRUPT - Halt interrupt
// SYS_PASSIVE_RELEASE - Interrupt, passive release
// SYS_INTERRUPT - Interrupt
// SYS_RESET - Reset
// SYS_ENTER_CONSOLE
//
//
// Macro to read TLINTRSUMx
//
// Based on the CPU_NUMBER, read either the TLINTRSUM0 or TLINTRSUM1 register
//
// Assumed register usage:
// rsum TLINTRSUMx contents
// raddr node space address
// scratch scratch register
//
#define Read_TLINTRSUMx(_rsum, _raddr, _scratch) \
nop; \
mfpr _scratch, pt_whami; /* Get our whami (VID) */ \
extbl _scratch, 1, _scratch; /* shift down to bit 0 */ \
lda _raddr, 0xff88(zero); /* Get base node space address bits */ \
sll _raddr, 24, _raddr; /* Shift up to proper position */ \
srl _scratch, 1, _rsum; /* Shift off the cpu number */ \
sll _rsum, 22, _rsum; /* Get our node offset */ \
addq _raddr, _rsum, _raddr; /* Get our base node space address */ \
blbs _scratch, 1f; \
lda _raddr, 0x1180(_raddr); \
br r31, 2f; \
1: lda _raddr, 0x11c0(_raddr); \
2: ldl_p _rsum, 0(_raddr) /* read the right tlintrsum reg */
//
// Macro to write TLINTRSUMx
//
// Based on the CPU_NUMBER, write either the TLINTRSUM0 or TLINTRSUM1 register
//
// Assumed register usage:
// rsum TLINTRSUMx write data
// raddr node space address
// scratch scratch register
//
#define Write_TLINTRSUMx(_rsum,_raddr,_whami) \
nop; \
mfpr _whami, pt_whami; /* Get our whami (VID) */ \
extbl _whami, 1, _whami; /* shift down to bit 0 */ \
lda _raddr, 0xff88(zero); /* Get base node space address bits */ \
sll _raddr, 24, _raddr; /* Shift up to proper position */ \
blbs _whami, 1f; \
lda _raddr, 0x1180(_raddr); \
br zero, 2f; \
1: lda _raddr, 0x11c0(_raddr); \
2: srl _whami, 1, _whami; /* Get our node offset */ \
addq _raddr, _whami, _raddr; /* Get our base node space address */ \
mb; \
stq_p _rsum, 0(_raddr); /* write the right tlintrsum reg */ \
ldq_p _rsum, 0(_raddr); /* dummy read to tlintrsum */ \
bis _rsum, _rsum, _rsum /* needed to complete the ldqp above */
//
// Macro to determine highest priority TIOP Node ID from interrupt pending mask
//
// Assumed register usage:
// rmask - TLINTRSUMx contents, shifted to isolate IOx bits
// rid - TLSB Node ID of highest TIOP
//
#define Intr_Find_TIOP(_rmask,_rid) \
srl _rmask,3,_rid; /* check IOP8 */ \
blbc _rid,1f; /* not IOP8 */ \
lda _rid,8(zero); /* IOP8 */ \
br zero,6f; \
1: srl _rmask,3,_rid; /* check IOP7 */ \
blbc _rid, 2f; /* not IOP7 */ \
lda _rid, 7(r31); /* IOP7 */ \
br r31, 6f; \
2: srl _rmask, 2, _rid; /* check IOP6 */ \
blbc _rid, 3f; /* not IOP6 */ \
lda _rid, 6(r31); /* IOP6 */ \
br r31, 6f; \
3: srl _rmask, 1, _rid; /* check IOP5 */ \
blbc _rid, 4f; /* not IOP5 */ \
lda _rid, 5(r31); /* IOP5 */ \
br r31, 6f; \
4: srl _rmask, 0, _rid; /* check IOP4 */ \
blbc _rid, 5f; /* not IOP4 */ \
lda r14, 4(r31); /* IOP4 */ \
br r31, 6f; \
5: lda r14, 0(r31); /* passive release */ \
6:
//
// Macro to calculate base node space address for given node id
//
// Assumed register usage:
// rid - TLSB node id
// raddr - base node space address
#define Get_TLSB_Node_Address(_rid,_raddr) \
sll _rid, 22, _rid; \
lda _raddr, 0xff88(zero); \
sll _raddr, 24, _raddr; \
addq _raddr, _rid, _raddr
#define OSFmchk_TLEPstore_1(_rlog,_rs,_rs1,_nodebase,_tlepreg) \
lda _rs1, tlep_##_tlepreg(zero); \
or _rs1, _nodebase, _rs1; \
ldl_p _rs1, 0(_rs1); \
stl_p _rs, mchk_##_tlepreg(_rlog) /* store in frame */
#define OSFmchk_TLEPstore(_tlepreg) \
OSFmchk_TLEPstore_1(r14,r8,r4,r13,_tlepreg)
#define OSFcrd_TLEPstore_1(_rlog,_rs,_rs1,_nodebase,_tlepreg) \
lda _rs1, tlep_##_tlepreg(zero); \
or _rs1, _nodebase, _rs1; \
ldl_p _rs1, 0(_rs1); \
stl_p _rs, mchk_crd_##_tlepreg(_rlog)
#define OSFcrd_TLEPstore_tlsb_1(_rlog,_rs,_rs1,_nodebase,_tlepreg) \
lda _rs1, tlsb_##_tlepreg(zero); \
or _rs1, _nodebase, _rs1; \
ldl_p _rs1, 0(_rs1); \
stl_p _rs,mchk_crd_##_tlepreg(_rlog)
#define OSFcrd_TLEPstore_tlsb_clr_1(_rlog,_rs,_rs1,_nodebase,_tlepreg) \
lda _rs1,tlsb_##_tlepreg(zero); \
or _rs1, _nodebase,_rs1; \
ldl_p _rs1, 0(_rs1); \
stl_p _rs, mchk_crd_##_tlepreg(_rlog); \
stl_p _rs, 0(_rs1)
#define OSFcrd_TLEPstore(_tlepreg) \
OSFcrd_TLEPstore_1(r14,r8,r4,r13,_tlepreg)
#define OSFcrd_TLEPstore_tlsb(_tlepreg) \
OSFcrd_TLEPstore_tlsb_1(r14,r8,r4,r13,_tlepreg)
#define OSFcrd_TLEPstore_tlsb_clr(_tlepreg) \
OSFcrd_TLEPstore_tlsb_clr_1(r14,r8,r4,r13,_tlepreg)
#define save_pcia_intr(_irq) \
and r13, 0xf, r25; /* isolate low 4 bits */ \
addq r14, 4, r14; /* format the TIOP Node id field */ \
sll r14, 4, r14; /* shift the TIOP Node id */ \
or r14, r25, r10; /* merge Node id/hose/HPC */ \
mfpr r14, pt14; /* get saved value */ \
extbl r14, _irq, r25; /* confirm none outstanding */ \
bne r25, sys_machine_check_while_in_pal; \
insbl r10, _irq, r10; /* align new info */ \
or r14, r10, r14; /* merge info */ \
mtpr r14, pt14; /* save it */ \
bic r13, 0xf, r13 /* clear low 4 bits of vector */
// wripir - PALcode for wripir instruction
// R16 has the processor number.
//
ALIGN_BLOCK
EXPORT(sys_wripir)
//
// Convert the processor number to a CPU mask
//
and r16, MAXPROC, r14 // mask the top stuff: MAXPROC+1 CPUs supported
bis r31, 0x1, r16 // get a one
sll r16, r14, r14 // shift the bit to the right place
#if defined(TSUNAMI) || defined(BIG_TSUNAMI)
sll r14,IPIQ_shift,r14
#endif
//
// Build the Broadcast Space base address
//
#if defined(TSUNAMI) || defined(BIG_TSUNAMI)
lda r16,0xf01(r31)
sll r16,32,r16
ldah r13,0xa0(r31)
sll r13,8,r13
bis r16,r13,r16
lda r16,IPIQ_addr(r16)
#elif defined(TLASER)
lda r13, 0xff8e(r31) // Load the upper address bits
sll r13, 24, r13 // shift them to the top
#endif
//
// Send out the IP Intr
//
#if defined(TSUNAMI) || defined(BIG_TSUNAMI)
stq_p r14, 0(r16) // Tsunami MISC Register
#elif defined(TLASER)
stq_p r14, 0x40(r13) // Write to TLIPINTR reg
#endif
wmb // Push out the store
hw_rei
// cflush - PALcode for CFLUSH instruction
//
// SYS_CFLUSH
// Entry:
// R16 - contains the PFN of the page to be flushed
//
// Function:
// Flush all Dstream caches of 1 entire page
//
//
ALIGN_BLOCK
EXPORT(sys_cflush)
// #convert pfn to addr, and clean off <63:20>
// #sll r16, <page_offset_size_bits>+<63-20>>, r12
sll r16, page_offset_size_bits+(63-20),r12
// #ldah r13,<<1@22>+32768>@-16(r31)// + xxx<31:16>
// # stolen from srcmax code. XXX bugnion
lda r13, 0x10(r31) // assume 16Mbytes of cache
sll r13, 20, r13 // convert to bytes
srl r12, 63-20, r12 // shift back to normal position
xor r12, r13, r12 // xor addr<18>
or r31, 8192/(32*8), r13 // get count of loads
nop
cflush_loop:
subq r13, 1, r13 // decr counter
mfpr r25, ev5__intid // Fetch level of interruptor
ldq_p r31, 32*0(r12) // do a load
ldq_p r31, 32*1(r12) // do next load
ldq_p r31, 32*2(r12) // do next load
ldq_p r31, 32*3(r12) // do next load
ldq_p r31, 32*4(r12) // do next load
ldq_p r31, 32*5(r12) // do next load
ldq_p r31, 32*6(r12) // do next load
ldq_p r31, 32*7(r12) // do next load
mfpr r14, ev5__ipl // Fetch current level
lda r12, (32*8)(r12) // skip to next cache block addr
cmple r25, r14, r25 // R25 = 1 if intid .less than or eql ipl
beq r25, 1f // if any int's pending, re-queue CFLUSH -- need to check for hlt interrupt???
bne r13, cflush_loop // loop till done
hw_rei // back to user
ALIGN_BRANCH
1: // Here if interrupted
mfpr r12, exc_addr
subq r12, 4, r12 // Backup PC to point to CFLUSH
mtpr r12, exc_addr
nop
mfpr r31, pt0 // Pad exc_addr write
hw_rei
ALIGN_BLOCK
//
// sys_cserve - PALcode for CSERVE instruction
//
// Function:
// Various functions for private use of console software
//
// option selector in r0
// arguments in r16....
//
//
// r0 = 0 unknown
//
// r0 = 1 ldq_p
// r0 = 2 stq_p
// args, are as for normal STQ_P/LDQ_P in VMS PAL
//
// r0 = 3 dump_tb's
// r16 = detination PA to dump tb's to.
//
// r0<0> = 1, success
// r0<0> = 0, failure, or option not supported
// r0<63:1> = (generally 0, but may be function dependent)
// r0 - load data on ldq_p
//
//
EXPORT(sys_cserve)
/* taken from scrmax */
cmpeq r18, CSERVE_K_RD_IMPURE, r0
bne r0, Sys_Cserve_Rd_Impure
cmpeq r18, CSERVE_K_JTOPAL, r0
bne r0, Sys_Cserve_Jtopal
call_pal 0
or r31, r31, r0
hw_rei // and back we go
Sys_Cserve_Rd_Impure:
mfpr r0, pt_impure // Get base of impure scratch area.
hw_rei
ALIGN_BRANCH
Sys_Cserve_Jtopal:
bic a0, 3, t8 // Clear out low 2 bits of address
bis t8, 1, t8 // Or in PAL mode bit
mtpr t8,exc_addr
hw_rei
// ldq_p
ALIGN_QUAD
1:
ldq_p r0,0(r17) // get the data
nop // pad palshadow write
hw_rei // and back we go
// stq_p
ALIGN_QUAD
2:
stq_p r18, 0(r17) // store the data
lda r0,17(r31) // bogus
hw_rei // and back we go
ALIGN_QUAD
csrv_callback:
ldq r16, 0(r17) // restore r16
ldq r17, 8(r17) // restore r17
lda r0, hlt_c_callback(r31)
br r31, sys_enter_console
csrv_identify:
mfpr r0, pal_base
ldq_p r0, 8(r0)
hw_rei
// dump tb's
ALIGN_QUAD
0:
// DTB PTEs - 64 entries
addq r31, 64, r0 // initialize loop counter
nop
1: mfpr r12, ev5__dtb_pte_temp // read out next pte to temp
mfpr r12, ev5__dtb_pte // read out next pte to reg file
subq r0, 1, r0 // decrement loop counter
nop // Pad - no Mbox instr in cycle after mfpr
stq_p r12, 0(r16) // store out PTE
addq r16, 8 ,r16 // increment pointer
bne r0, 1b
ALIGN_BRANCH
// ITB PTEs - 48 entries
addq r31, 48, r0 // initialize loop counter
nop
2: mfpr r12, ev5__itb_pte_temp // read out next pte to temp
mfpr r12, ev5__itb_pte // read out next pte to reg file
subq r0, 1, r0 // decrement loop counter
nop //
stq_p r12, 0(r16) // store out PTE
addq r16, 8 ,r16 // increment pointer
bne r0, 2b
or r31, 1, r0 // set success
hw_rei // and back we go
//
// SYS_INTERRUPT - Interrupt processing code
//
// Current state:
// Stack is pushed
// ps, sp and gp are updated
// r12, r14 - available
// r13 - INTID (new EV5 IPL)
// r25 - ISR
// r16, r17, r18 - available
//
//
EXPORT(sys_interrupt)
cmpeq r13, 31, r12 // Check for level 31 interrupt
bne r12, sys_int_mchk_or_crd // machine check or crd
cmpeq r13, 30, r12 // Check for level 30 interrupt
bne r12, sys_int_powerfail // powerfail
cmpeq r13, 29, r12 // Check for level 29 interrupt
bne r12, sys_int_perf_cnt // performance counters
cmpeq r13, 23, r12 // Check for level 23 interrupt
bne r12, sys_int_23 // IPI in Tsunami
cmpeq r13, 22, r12 // Check for level 22 interrupt
bne r12, sys_int_22 // timer interrupt
cmpeq r13, 21, r12 // Check for level 21 interrupt
bne r12, sys_int_21 // I/O
cmpeq r13, 20, r12 // Check for level 20 interrupt
bne r12, sys_int_20 // system error interrupt
// (might be corrected)
mfpr r14, exc_addr // ooops, something is wrong
br r31, pal_pal_bug_check_from_int
//
//sys_int_2*
// Routines to handle device interrupts at IPL 23-20.
// System specific method to ack/clear the interrupt, detect passive
// release, detect interprocessor (22), interval clock (22), corrected
// system error (20)
//
// Current state:
// Stack is pushed
// ps, sp and gp are updated
// r12, r14 - available
// r13 - INTID (new EV5 IPL)
// r25 - ISR
//
// On exit:
// Interrupt has been ack'd/cleared
// a0/r16 - signals IO device interrupt
// a1/r17 - contains interrupt vector
// exit to ent_int address
//
//
#if defined(TSUNAMI) || defined(BIG_TSUNAMI)
ALIGN_BRANCH
sys_int_23:
or r31,0,r16 // IPI interrupt A0 = 0
lda r12,0xf01(r31) // build up an address for the MISC register
sll r12,16,r12
lda r12,0xa000(r12)
sll r12,16,r12
lda r12,IPIR_addr(r12)
mfpr r10, pt_whami // get CPU ID
extbl r10, 1, r10 // Isolate just whami bits
or r31,0x1,r14 // load r14 with bit to clear
sll r14,r10,r14 // left shift by CPU ID
sll r14,IPIR_shift,r14
stq_p r14, 0(r12) // clear the ipi interrupt
br r31, pal_post_interrupt // Notify the OS
ALIGN_BRANCH
sys_int_22:
or r31,1,r16 // a0 means it is a clock interrupt
lda r12,0xf01(r31) // build up an address for the MISC register
sll r12,16,r12
lda r12,0xa000(r12)
sll r12,16,r12
lda r12,RTC_addr(r12)
mfpr r10, pt_whami // get CPU ID
extbl r10, 1, r10 // Isolate just whami bits
or r31,0x1,r14 // load r14 with bit to clear
sll r14,r10,r14 // left shift by CPU ID
sll r14,RTC_shift,r14 // put the bits in the right position
stq_p r14, 0(r12) // clear the rtc interrupt
br r31, pal_post_interrupt // Tell the OS
ALIGN_BRANCH
sys_int_20:
Read_TLINTRSUMx(r13,r10,r14) // read the right TLINTRSUMx
srl r13, 12, r13 // shift down to examine IPL15
Intr_Find_TIOP(r13,r14)
beq r14, 1f
Get_TLSB_Node_Address(r14,r10)
lda r10, 0xa40(r10) // Get base TLILID address
ldl_p r13, 0(r10) // Read the TLILID register
bne r13, pal_post_dev_interrupt
beq r13, 1f
and r13, 0x3, r10 // check for PCIA bits
beq r10, pal_post_dev_interrupt // done if nothing set
save_pcia_intr(1)
br r31, pal_post_dev_interrupt //
1: lda r16, osfint_c_passrel(r31) // passive release
br r31, pal_post_interrupt //
ALIGN_BRANCH
sys_int_21:
lda r12,0xf01(r31) // calculate DIRn address
sll r12,32,r12
ldah r13,DIR_addr(r31)
sll r13,8,r13
bis r12,r13,r12
mfpr r13, pt_whami // get CPU ID
extbl r13, 1, r13 // Isolate just whami bits
#ifdef BIG_TSUNAMI
sll r13,4,r13
or r12,r13,r12
#else
lda r12,0x0080(r12)
and r13,0x1,r14 // grab LSB and shift left 6
sll r14,6,r14
and r13,0x2,r10 // grabl LSB+1 and shift left 9
sll r10,9,r10
mskbl r12,0,r12 // calculate DIRn address
lda r13,0x280(r31)
bis r12,r13,r12
or r12,r14,r12
or r12,r10,r12
#endif
ldq_p r13, 0(r12) // read DIRn
or r31,1,r14 // set bit 55 (ISA Interrupt)
sll r14,55,r14
and r13, r14, r14 // check if bit 55 is set
lda r16,0x900(r31) // load offset for normal into r13
beq r14, normal_int // if not compute the vector normally
lda r16,0x800(r31) // replace with offset for pic
lda r12,0xf01(r31) // build an addr to access PIC
sll r12,32,r12 // at f01fc000000
ldah r13,0xfc(r31)
sll r13,8,r13
bis r12,r13,r12
ldq_p r13,0x0020(r12) // read PIC1 ISR for interrupting dev
normal_int:
//ctlz r13,r14 // count the number of leading zeros
// EV5 doesn't have ctlz, but we do, so lets use it
.byte 0x4e
.byte 0x06
.byte 0xed
.byte 0x73
lda r10,63(r31)
subq r10,r14,r17 // subtract from
lda r13,0x10(r31)
mulq r17,r13,r17 // compute 0x900 + (0x10 * Highest DIRn-bit)
addq r17,r16,r17
or r31,3,r16 // a0 means it is a I/O interrupt
br r31, pal_post_interrupt
#elif defined(TLASER)
ALIGN_BRANCH
sys_int_23:
Read_TLINTRSUMx(r13,r10,r14) // read the right TLINTRSUMx
srl r13, 22, r13 // shift down to examine IPL17
Intr_Find_TIOP(r13,r14)
beq r14, 1f
Get_TLSB_Node_Address(r14,r10)
lda r10, 0xac0(r10) // Get base TLILID address
ldl_p r13, 0(r10) // Read the TLILID register
bne r13, pal_post_dev_interrupt
1: lda r16, osfint_c_passrel(r31) // passive release
br r31, pal_post_interrupt //
ALIGN_BRANCH
sys_int_22:
Read_TLINTRSUMx(r13,r10,r14) // read the right TLINTRSUMx
srl r13, 6, r14 // check the Intim bit
blbs r14, tlep_intim // go service Intim
srl r13, 5, r14 // check the IP Int bit
blbs r14, tlep_ipint // go service IP Int
srl r13, 17, r13 // shift down to examine IPL16
Intr_Find_TIOP(r13,r14)
beq r14, 1f
Get_TLSB_Node_Address(r14,r10)
lda r10, 0xa80(r10) // Get base TLILID address
ldl_p r13, 0(r10) // Read the TLILID register
bne r13, pal_post_dev_interrupt
beq r13, 1f
and r13, 0x3, r10 // check for PCIA bits
beq r10, pal_post_dev_interrupt // done if nothing set
save_pcia_intr(2)
br r31, pal_post_dev_interrupt //
1: lda r16, osfint_c_passrel(r31) // passive release
br r31, pal_post_interrupt //
ALIGN_BRANCH
sys_int_21:
Read_TLINTRSUMx(r13,r10,r14) // read the right TLINTRSUMx
srl r13, 12, r13 // shift down to examine IPL15
Intr_Find_TIOP(r13,r14)
beq r14, 1f
Get_TLSB_Node_Address(r14,r10)
lda r10, 0xa40(r10) // Get base TLILID address
ldl_p r13, 0(r10) // Read the TLILID register
bne r13, pal_post_dev_interrupt
beq r13, 1f
and r13, 0x3, r10 // check for PCIA bits
beq r10, pal_post_dev_interrupt // done if nothing set
save_pcia_intr(1)
br r31, pal_post_dev_interrupt //
1: lda r16, osfint_c_passrel(r31) // passive release
br r31, pal_post_interrupt //
ALIGN_BRANCH
sys_int_20:
lda r13, 1(r31) // Duart0 bit
Write_TLINTRSUMx(r13,r10,r14) // clear the duart0 bit
Read_TLINTRSUMx(r13,r10,r14) // read the right TLINTRSUMx
blbs r13, tlep_uart0 // go service UART int
srl r13, 7, r13 // shift down to examine IPL14
Intr_Find_TIOP(r13,r14)
beq r14, tlep_ecc // Branch if not IPL14
Get_TLSB_Node_Address(r14,r10)
lda r10, 0xa00(r10) // Get base TLILID0 address
ldl_p r13, 0(r10) // Read the TLILID register
bne r13, pal_post_dev_interrupt
beq r13, 1f
and r13, 0x3, r10 // check for PCIA bits
beq r10, pal_post_dev_interrupt // done if nothing set
save_pcia_intr(0)
br r31, pal_post_dev_interrupt //
1: lda r16, osfint_c_passrel(r31) // passive release
br r31, pal_post_interrupt //
ALIGN_BRANCH
tlep_intim:
lda r13, 0xffb(r31) // get upper GBUS address bits
sll r13, 28, r13 // shift up to top
lda r13, (0x300)(r13) // full CSRC address (tlep watch csrc offset)
ldq_p r13, 0(r13) // read CSRC
lda r13, 0x40(r31) // load Intim bit
Write_TLINTRSUMx(r13,r10,r14) // clear the Intim bit
lda r16, osfint_c_clk(r31) // passive release
br r31, pal_post_interrupt // Build the stack frame
ALIGN_BRANCH
tlep_ipint:
lda r13, 0x20(r31) // load IP Int bit
Write_TLINTRSUMx(r13,r10,r14) // clear the IP Int bit
lda r16, osfint_c_ip(r31) // passive release
br r31, pal_post_interrupt // Build the stack frame
ALIGN_BRANCH
tlep_uart0:
lda r13, 0xffa(r31) // get upper GBUS address bits
sll r13, 28, r13 // shift up to top
ldl_p r14, 0x80(r13) // zero pointer register
lda r14, 3(r31) // index to RR3
stl_p r14, 0x80(r13) // write pointer register
mb
mb
ldl_p r14, 0x80(r13) // read RR3
srl r14, 5, r10 // is it Channel A RX?
blbs r10, uart0_rx
srl r14, 4, r10 // is it Channel A TX?
blbs r10, uart0_tx
srl r14, 2, r10 // is it Channel B RX?
blbs r10, uart1_rx
srl r14, 1, r10 // is it Channel B TX?
blbs r10, uart1_tx
lda r8, 0(r31) // passive release
br r31, clear_duart0_int // clear tlintrsum and post
ALIGN_BRANCH
uart0_rx:
lda r8, 0x680(r31) // UART0 RX vector
br r31, clear_duart0_int // clear tlintrsum and post
ALIGN_BRANCH
uart0_tx:
lda r14, 0x28(r31) // Reset TX Int Pending code
mb
stl_p r14, 0x80(r13) // write Channel A WR0
mb
lda r8, 0x6c0(r31) // UART0 TX vector
br r31, clear_duart0_int // clear tlintrsum and post
ALIGN_BRANCH
uart1_rx:
lda r8, 0x690(r31) // UART1 RX vector
br r31, clear_duart0_int // clear tlintrsum and post
ALIGN_BRANCH
uart1_tx:
lda r14, 0x28(r31) // Reset TX Int Pending code
stl_p r14, 0(r13) // write Channel B WR0
lda r8, 0x6d0(r31) // UART1 TX vector
br r31, clear_duart0_int // clear tlintrsum and post
ALIGN_BRANCH
clear_duart0_int:
lda r13, 1(r31) // load duart0 bit
Write_TLINTRSUMx(r13,r10,r14) // clear the duart0 bit
beq r8, 1f
or r8, r31, r13 // move vector to r13
br r31, pal_post_dev_interrupt // Build the stack frame
1: nop
nop
hw_rei
// lda r16, osfint_c_passrel(r31) // passive release
// br r31, pal_post_interrupt //
ALIGN_BRANCH
tlep_ecc:
mfpr r14, pt_whami // get our node id
extbl r14, 1, r14 // shift to bit 0
srl r14, 1, r14 // shift off cpu number
Get_TLSB_Node_Address(r14,r10) // compute our nodespace address
ldl_p r13, 0x40(r10) // read our TLBER WAS tlsb_tlber_offset
srl r13, 17, r13 // shift down the CWDE/CRDE bits
and r13, 3, r13 // mask the CWDE/CRDE bits
beq r13, 1f
ornot r31, r31, r12 // set flag
lda r9, mchk_c_sys_ecc(r31) // System Correctable error MCHK code
br r31, sys_merge_sys_corr // jump to CRD logout frame code
1: lda r16, osfint_c_passrel(r31) // passive release
#endif // if TSUNAMI || BIG_TSUNAMI elif TLASER
ALIGN_BRANCH
pal_post_dev_interrupt:
or r13, r31, r17 // move vector to a1
or r31, osfint_c_dev, r16 // a0 signals IO device interrupt
pal_post_interrupt:
mfpr r12, pt_entint
mtpr r12, exc_addr
nop
nop
hw_rei_spe
//
// sys_passive_release
// Just pretend the interrupt never occurred.
//
EXPORT(sys_passive_release)
mtpr r11, ev5__dtb_cm // Restore Mbox current mode for ps
nop
mfpr r31, pt0 // Pad write to dtb_cm
hw_rei
//
// sys_int_powerfail
// A powerfail interrupt has been detected. The stack has been pushed.
// IPL and PS are updated as well.
//
// I'm not sure what to do here, I'm treating it as an IO device interrupt
//
//
ALIGN_BLOCK
sys_int_powerfail:
lda r12, 0xffc4(r31) // get GBUS_MISCR address bits
sll r12, 24, r12 // shift to proper position
ldq_p r12, 0(r12) // read GBUS_MISCR
srl r12, 5, r12 // isolate bit <5>
blbc r12, 1f // if clear, no missed mchk
// Missed a CFAIL mchk
lda r13, 0xffc7(r31) // get GBUS$SERNUM address bits
sll r13, 24, r13 // shift to proper position
lda r14, 0x40(r31) // get bit <6> mask
ldq_p r12, 0(r13) // read GBUS$SERNUM
or r12, r14, r14 // set bit <6>
stq_p r14, 0(r13) // clear GBUS$SERNUM<6>
mb
mb
1: br r31, sys_int_mchk // do a machine check
lda r17, scb_v_pwrfail(r31) // a1 to interrupt vector
mfpr r25, pt_entint
lda r16, osfint_c_dev(r31) // a0 to device code
mtpr r25, exc_addr
nop // pad exc_addr write
nop
hw_rei_spe
//
// sys_halt_interrupt
// A halt interrupt has been detected. Pass control to the console.
//
//
//
EXPORT(sys_halt_interrupt)
ldah r13, 0x1800(r31) // load Halt/^PHalt bits
Write_TLINTRSUMx(r13,r10,r14) // clear the ^PHalt bits
mtpr r11, dtb_cm // Restore Mbox current mode
nop
nop
mtpr r0, pt0
lda r0, hlt_c_hw_halt(r31) // set halt code to hw halt
br r31, sys_enter_console // enter the console
//
// sys_int_mchk_or_crd
//
// Current state:
// Stack is pushed
// ps, sp and gp are updated
// r12
// r13 - INTID (new EV5 IPL)
// r14 - exc_addr
// r25 - ISR
// r16, r17, r18 - available
//
//
ALIGN_BLOCK
sys_int_mchk_or_crd:
srl r25, isr_v_mck, r12
blbs r12, sys_int_mchk
//
// Not a Machine check interrupt, so must be an Internal CRD interrupt
//
mb //Clear out Cbox prior to reading IPRs
srl r25, isr_v_crd, r13 //Check for CRD
blbc r13, pal_pal_bug_check_from_int //If CRD not set, shouldn't be here!!!
lda r9, 1(r31)
sll r9, hwint_clr_v_crdc, r9 // get ack bit for crd
mtpr r9, ev5__hwint_clr // ack the crd interrupt
or r31, r31, r12 // clear flag
lda r9, mchk_c_ecc_c(r31) // Correctable error MCHK code
sys_merge_sys_corr:
ldah r14, 0xfff0(r31)
mtpr r0, pt0 // save r0 for scratch
zap r14, 0xE0, r14 // Get Cbox IPR base
mtpr r1, pt1 // save r0 for scratch
ldq_p r0, ei_addr(r14) // EI_ADDR IPR
ldq_p r10, fill_syn(r14) // FILL_SYN IPR
bis r0, r10, r31 // Touch lds to make sure they complete before doing scrub
blbs r12, 1f // no scrubbing for IRQ0 case
// XXX bugnion pvc_jsr crd_scrub_mem, bsr=1
bsr r13, sys_crd_scrub_mem // and go scrub
// ld/st pair in scrub routine will have finished due
// to ibox stall of stx_c. Don't need another mb.
ldq_p r8, ei_stat(r14) // EI_STAT, unlock EI_ADDR, BC_TAG_ADDR, FILL_SYN
or r8, r31, r12 // Must only be executed once in this flow, and must
br r31, 2f // be after the scrub routine.
1: ldq_p r8, ei_stat(r14) // EI_STAT, unlock EI_ADDR, BC_TAG_ADDR, FILL_SYN
// For IRQ0 CRD case only - meaningless data.
2: mfpr r13, pt_mces // Get MCES
srl r12, ei_stat_v_ei_es, r14 // Isolate EI_STAT:EI_ES
blbc r14, 6f // branch if 630
srl r13, mces_v_dsc, r14 // check if 620 reporting disabled
blbc r14, 5f // branch if enabled
or r13, r31, r14 // don't set SCE if disabled
br r31, 8f // continue
5: bis r13, BIT(mces_v_sce), r14 // Set MCES<SCE> bit
br r31, 8f
6: srl r13, mces_v_dpc, r14 // check if 630 reporting disabled
blbc r14, 7f // branch if enabled
or r13, r31, r14 // don't set PCE if disabled
br r31, 8f // continue
7: bis r13, BIT(mces_v_pce), r14 // Set MCES<PCE> bit
// Setup SCB if dpc is not set
8: mtpr r14, pt_mces // Store updated MCES
srl r13, mces_v_sce, r1 // Get SCE
srl r13, mces_v_pce, r14 // Get PCE
or r1, r14, r1 // SCE OR PCE, since they share
// the CRD logout frame
// Get base of the logout area.
GET_IMPURE(r14) // addr of per-cpu impure area
GET_ADDR(r14,(pal_logout_area+mchk_crd_base),r14)
blbc r1, sys_crd_write_logout_frame // If pce/sce not set, build the frame
// Set the 2nd error flag in the logout area:
lda r1, 3(r31) // Set retry and 2nd error flags
sll r1, 30, r1 // Move to bits 31:30 of logout frame flag longword
stl_p r1, mchk_crd_flag+4(r14) // store flag longword
br sys_crd_ack
sys_crd_write_logout_frame:
// should only be here if neither the pce or sce bits are set
//
// Write the mchk code to the logout area
//
stq_p r9, mchk_crd_mchk_code(r14)
//
// Write the first 2 quadwords of the logout area:
//
lda r1, 1(r31) // Set retry flag
sll r1, 63, r9 // Move retry flag to bit 63
lda r1, mchk_crd_size(r9) // Combine retry flag and frame size
stq_p r1, mchk_crd_flag(r14) // store flag/frame size
//
// Write error IPRs already fetched to the logout area
//
stq_p r0, mchk_crd_ei_addr(r14)
stq_p r10, mchk_crd_fill_syn(r14)
stq_p r8, mchk_crd_ei_stat(r14)
stq_p r25, mchk_crd_isr(r14)
//
// Log system specific info here
//
crd_storeTLEP_:
lda r1, 0xffc4(r31) // Get GBUS$MISCR address
sll r1, 24, r1
ldq_p r1, 0(r1) // Read GBUS$MISCR
sll r1, 16, r1 // shift up to proper field
mfpr r10, pt_whami // get our node id
extbl r10, 1, r10 // shift to bit 0
or r1, r10, r1 // merge MISCR and WHAMI
stl_p r1, mchk_crd_whami(r14) // write to crd logout area
srl r10, 1, r10 // shift off cpu number
Get_TLSB_Node_Address(r10,r0) // compute our nodespace address
OSFcrd_TLEPstore_tlsb(tldev)
OSFcrd_TLEPstore_tlsb_clr(tlber)
OSFcrd_TLEPstore_tlsb_clr(tlesr0)
OSFcrd_TLEPstore_tlsb_clr(tlesr1)
OSFcrd_TLEPstore_tlsb_clr(tlesr2)
OSFcrd_TLEPstore_tlsb_clr(tlesr3)
sys_crd_ack:
mfpr r0, pt0 // restore r0
mfpr r1, pt1 // restore r1
srl r12, ei_stat_v_ei_es, r12
blbc r12, 5f
srl r13, mces_v_dsc, r10 // logging enabled?
br r31, 6f
5: srl r13, mces_v_dpc, r10 // logging enabled?
6: blbc r10, sys_crd_post_interrupt // logging enabled -- report it
// logging not enabled
// Get base of the logout area.
GET_IMPURE(r13) // addr of per-cpu impure area
GET_ADDR(r13,(pal_logout_area+mchk_crd_base),r13)
ldl_p r10, mchk_crd_rsvd(r13) // bump counter
addl r10, 1, r10
stl_p r10, mchk_crd_rsvd(r13)
mb
br r31, sys_crd_dismiss_interrupt // just return
//
// The stack is pushed. Load up a0,a1,a2 and vector via entInt
//
//
ALIGN_BRANCH
sys_crd_post_interrupt:
lda r16, osfint_c_mchk(r31) // flag as mchk/crd in a0
lda r17, scb_v_proc_corr_err(r31) // a1 <- interrupt vector
blbc r12, 1f
lda r17, scb_v_sys_corr_err(r31) // a1 <- interrupt vector
1: subq r31, 1, r18 // get a -1
mfpr r25, pt_entInt
srl r18, 42, r18 // shift off low bits of kseg addr
mtpr r25, exc_addr // load interrupt vector
sll r18, 42, r18 // shift back into position
or r14, r18, r18 // EV4 algorithm - pass pointer to mchk frame as kseg address
hw_rei_spe // done
//
// The stack is pushed. Need to back out of it all.
//
sys_crd_dismiss_interrupt:
br r31, Call_Pal_Rti
// sys_crd_scrub_mem
//
// r0 = addr of cache block
//
ALIGN_BLOCK // align for branch target
sys_crd_scrub_mem:
// now find error in memory, and attempt to scrub that cache block
// This routine just scrubs the failing octaword
// Only need to "touch" one quadword per octaword to accomplish the scrub
srl r0, 39, r8 // get high bit of bad pa
blbs r8, 1f // don't attempt fixup on IO space addrs
nop // needed to align the ldq_pl to octaword boundary
nop // "
ldq_p r8, 0(r0) // attempt to read the bad memory
// location
// (Note bits 63:40,3:0 of ei_addr
// are set to 1, but as long as
// we are doing a phys ref, should
// be ok)
nop // Needed to keep the Ibox from swapping the ldq_p into E1
stq_p r8, 0(r0) // Store it back if it is still there.
// If store fails, location already
// scrubbed by someone else
nop // needed to align the ldq_p to octaword boundary
lda r8, 0x20(r31) // flip bit 5 to touch next hexaword
xor r8, r0, r0
nop // needed to align the ldq_p to octaword boundary
nop // "
ldq_p r8, 0(r0) // attempt to read the bad memory
// location
// (Note bits 63:40,3:0 of ei_addr
// are set to 1, but as long as
// we are doing a phys ref, should
// be ok)
nop // Needed to keep the Ibox from swapping the ldq_p into E1
stq_p r8, 0(r0) // Store it back if it is still there.
// If store fails, location already
// scrubbed by someone else
lda r8, 0x20(r31) // restore r0 to original address
xor r8, r0, r0
//at this point, ei_stat could be locked due to a new corr error on the ld,
//so read ei_stat to unlock AFTER this routine.
// XXX bugnion pvc$jsr crd_scrub_mem, bsr=1, dest=1
1: ret r31, (r13) // and back we go
//
// sys_int_mchk - MCHK Interrupt code
//
// Machine check interrupt from the system. Setup and join the
// regular machine check flow.
// On exit:
// pt0 - saved r0
// pt1 - saved r1
// pt4 - saved r4
// pt5 - saved r5
// pt6 - saved r6
// pt10 - saved exc_addr
// pt_misc<47:32> - mchk code
// pt_misc<31:16> - scb vector
// r14 - base of Cbox IPRs in IO space
// MCES<mchk> is set
//
ALIGN_BLOCK
sys_int_mchk:
lda r14, mchk_c_sys_hrd_error(r31)
mfpr r12, exc_addr
addq r14, 1, r14 // Flag as interrupt
nop
sll r14, 32, r14 // Move mchk code to position
mtpr r12, pt10 // Stash exc_addr
mfpr r12, pt_misc // Get MCES and scratch
mtpr r0, pt0 // Stash for scratch
zap r12, 0x3c, r12 // Clear scratch
blbs r12, sys_double_machine_check // MCHK halt if double machine check
or r12, r14, r12 // Combine mchk code
lda r14, scb_v_sysmchk(r31) // Get SCB vector
sll r14, 16, r14 // Move SCBv to position
or r12, r14, r14 // Combine SCBv
bis r14, BIT(mces_v_mchk), r14 // Set MCES<MCHK> bit
mtpr r14, pt_misc // Save mchk code!scbv!whami!mces
ldah r14, 0xfff0(r31)
mtpr r1, pt1 // Stash for scratch
zap r14, 0xE0, r14 // Get Cbox IPR base
mtpr r4, pt4
mtpr r5, pt5
mtpr r6, pt6
br r31, sys_mchk_collect_iprs // Join common machine check flow
//
// sys_int_perf_cnt - Performance counter interrupt code
//
// A performance counter interrupt has been detected. The stack
// has been pushed. IPL and PS are updated as well.
//
// on exit to interrupt entry point ENTINT::
// a0 = osfint$c_perf
// a1 = scb$v_perfmon (650)
// a2 = 0 if performance counter 0 fired
// a2 = 1 if performance counter 1 fired
// a2 = 2 if performance counter 2 fired
// (if more than one counter overflowed, an interrupt will be
// generated for each counter that overflows)
//
//
//
ALIGN_BLOCK
sys_int_perf_cnt: // Performance counter interrupt
lda r17, scb_v_perfmon(r31) // a1 to interrupt vector
mfpr r25, pt_entint
lda r16, osfint_c_perf(r31) // a0 to perf counter code
mtpr r25, exc_addr
//isolate which perf ctr fired, load code in a2, and ack
mfpr r25, isr
or r31, r31, r18 // assume interrupt was pc0
srl r25, isr_v_pc1, r25 // isolate
cmovlbs r25, 1, r18 // if pc1 set, load 1 into r14
srl r25, 1, r25 // get pc2
cmovlbs r25, 2, r18 // if pc2 set, load 2 into r14
lda r25, 1(r31) // get a one
sll r25, r18, r25
sll r25, hwint_clr_v_pc0c, r25 // ack only the perf counter that generated the interrupt
mtpr r25, hwint_clr
hw_rei_spe
//
// sys_reset - System specific RESET code
// On entry:
// r1 = pal_base +8
//
// Entry state on trap:
// r0 = whami
// r2 = base of scratch area
// r3 = halt code
// and the following 3 if init_cbox is enabled:
// r5 = sc_ctl
// r6 = bc_ctl
// r7 = bc_cnfg
//
// Entry state on switch:
// r17 - new PC
// r18 - new PCBB
// r19 - new VPTB
//
ALIGN_BLOCK
.globl sys_reset
sys_reset:
// mtpr r31, ic_flush_ctl // do not flush the icache - done by hardware before SROM load
mtpr r31, itb_ia // clear the ITB
mtpr r31, dtb_ia // clear the DTB
lda r1, -8(r1) // point to start of code
mtpr r1, pal_base // initialize PAL_BASE
// Interrupts
mtpr r31, astrr // stop ASTs
mtpr r31, aster // stop ASTs
mtpr r31, sirr // clear software interrupts
mtpr r0, pt1 // r0 is whami (unless we entered via swp)
ldah r1,(BIT(icsr_v_sde-16)|BIT(icsr_v_fpe-16)|BIT(icsr_v_spe-16+1))(zero)
bis r31, 1, r0
sll r0, icsr_v_crde, r0 // A 1 in iscr<corr_read_enable>
or r0, r1, r1 // Set the bit
mtpr r1, icsr // ICSR - Shadows enabled, Floating point enable,
// super page enabled, correct read per assembly option
// Mbox/Dcache init
lda r1,BIT(mcsr_v_sp1)(zero)
mtpr r1, mcsr // MCSR - Super page enabled
lda r1, BIT(dc_mode_v_dc_ena)(r31)
ALIGN_BRANCH
// mtpr r1, dc_mode // turn Dcache on
nop
mfpr r31, pt0 // No Mbox instr in 1,2,3,4
mfpr r31, pt0
mfpr r31, pt0
mfpr r31, pt0
mtpr r31, dc_flush // flush Dcache
// build PS (IPL=7,CM=K,VMM=0,SW=0)
lda r11, 0x7(r31) // Set shadow copy of PS - kern mode, IPL=7
lda r1, 0x1F(r31)
mtpr r1, ipl // set internal <ipl>=1F
mtpr r31, ev5__ps // set new ps<cm>=0, Ibox copy
mtpr r31, dtb_cm // set new ps<cm>=0, Mbox copy
// Create the PALtemp pt_intmask
// MAP:
// OSF IPL EV5 internal IPL(hex) note
// 0 0
// 1 1
// 2 2
// 3 14 device
// 4 15 device
// 5 16 device
// 6 1E device,performance counter, powerfail
// 7 1F
//
ldah r1, 0x1f1E(r31) // Create upper lw of int_mask
lda r1, 0x1615(r1)
sll r1, 32, r1
ldah r1, 0x1402(r1) // Create lower lw of int_mask
lda r1, 0x0100(r1)
mtpr r1, pt_intmask // Stash in PALtemp
// Unlock a bunch of chip internal IPRs
mtpr r31, exc_sum // clear out exeception summary and exc_mask
mfpr r31, va // unlock va, mmstat
lda r8,(BIT(icperr_stat_v_dpe)|BIT(icperr_stat_v_tpe)|BIT(icperr_stat_v_tmr))(zero)
mtpr r8, icperr_stat // Clear Icache parity error & timeout status
lda r8,(BIT(dcperr_stat_v_lock)|BIT(dcperr_stat_v_seo))(r31)
mtpr r8, dcperr_stat // Clear Dcache parity error status
rc r0 // clear intr_flag
mtpr r31, pt_trap
mfpr r0, pt_misc
srl r0, pt_misc_v_switch, r1
blbs r1, sys_reset_switch // see if we got here from swppal
// Rest of the "real" reset flow
// ASN
mtpr r31, dtb_asn
mtpr r31, itb_asn
lda r1, 0x67(r31)
sll r1, hwint_clr_v_pc0c, r1
mtpr r1, hwint_clr // Clear hardware interrupt requests
lda r1, BIT(mces_v_dpc)(r31) // 1 in disable processor correctable error
mfpr r0, pt1 // get whami
insbl r0, 1, r0 // isolate whami in correct pt_misc position
or r0, r1, r1 // combine whami and mces
mtpr r1, pt_misc // store whami and mces, swap bit clear
zapnot r3, 1, r0 // isolate halt code
mtpr r0, pt0 // save entry type
// Cycle counter
or r31, 1, r9 // get a one
sll r9, 32, r9 // shift to <32>
mtpr r31, cc // clear Cycle Counter
mtpr r9, cc_ctl // clear and enable the Cycle Counter
mtpr r31, pt_scc // clear System Cycle Counter
// Misc PALtemps
mtpr r31, maf_mode // no mbox instructions for 3 cycles
or r31, 1, r1 // get bogus scbb value
mtpr r1, pt_scbb // load scbb
mtpr r31, pt_prbr // clear out prbr
#if defined(TSUNAMI) || defined(BIG_TSUNAMI)
// yes, this is ugly, but you figure out a better
// way to get the address of the kludge_initial_pcbb
// in r1 with an uncooperative assembler --ali
br r1, kludge_getpcb_addr
br r31, kludge_initial_pcbb
kludge_getpcb_addr:
ldq_p r19, 0(r1)
sll r19, 44, r19
srl r19, 44, r19
mulq r19,4,r19
addq r19, r1, r1
addq r1,4,r1
#elif defined(TLASER)
// or zero,kludge_initial_pcbb,r1
GET_ADDR(r1, (kludge_initial_pcbb-pal_base), r1)
#endif
mtpr r1, pt_pcbb // load pcbb
lda r1, 2(r31) // get a two
sll r1, 32, r1 // gen up upper bits
mtpr r1, mvptbr
mtpr r1, ivptbr
mtpr r31, pt_ptbr
// Performance counters
mtpr r31, pmctr
// Clear pmctr_ctl in impure area
ldah r14, 0xfff0(r31)
zap r14, 0xE0, r14 // Get Cbox IPR base
GET_IMPURE(r13)
stq_p r31, 0(r13) // Clear lock_flag
mfpr r0, pt0 // get entry type
br r31, sys_enter_console // enter the cosole
// swppal entry
// r0 - pt_misc
// r17 - new PC
// r18 - new PCBB
// r19 - new VPTB
sys_reset_switch:
or r31, 1, r9
sll r9, pt_misc_v_switch, r9
bic r0, r9, r0 // clear switch bit
mtpr r0, pt_misc
rpcc r1 // get cyccounter
ldq_p r22, osfpcb_q_fen(r18) // get new fen/pme
ldl_p r23, osfpcb_l_cc(r18) // get cycle counter
ldl_p r24, osfpcb_l_asn(r18) // get new asn
ldq_p r25, osfpcb_q_Mmptr(r18)// get new mmptr
sll r25, page_offset_size_bits, r25 // convert pfn to pa
mtpr r25, pt_ptbr // load the new mmptr
mtpr r18, pt_pcbb // set new pcbb
bic r17, 3, r17 // clean use pc
mtpr r17, exc_addr // set new pc
mtpr r19, mvptbr
mtpr r19, ivptbr
ldq_p r30, osfpcb_q_Usp(r18) // get new usp
mtpr r30, pt_usp // save usp
sll r24, dtb_asn_v_asn, r8
mtpr r8, dtb_asn
sll r24, itb_asn_v_asn, r24
mtpr r24, itb_asn
mfpr r25, icsr // get current icsr
lda r24, 1(r31)
sll r24, icsr_v_fpe, r24 // 1 in icsr<fpe> position
bic r25, r24, r25 // clean out old fpe
and r22, 1, r22 // isolate new fen bit
sll r22, icsr_v_fpe, r22
or r22, r25, r25 // or in new fpe
mtpr r25, icsr // update ibox ipr
subl r23, r1, r1 // gen new cc offset
insll r1, 4, r1 // << 32
mtpr r1, cc // set new offset
or r31, r31, r0 // set success
ldq_p r30, osfpcb_q_Ksp(r18) // get new ksp
mfpr r31, pt0 // stall
hw_rei_stall
//
//sys_machine_check - Machine check PAL
// A machine_check trap has occurred. The Icache has been flushed.
//
//
ALIGN_BLOCK
EXPORT(sys_machine_check)
// Need to fill up the refill buffer (32 instructions) and
// then flush the Icache again.
// Also, due to possible 2nd Cbox register file write for
// uncorrectable errors, no register file read or write for 7 cycles.
//nop
.long 0x4000054 // call M5 Panic
mtpr r0, pt0 // Stash for scratch -- OK if Cbox overwrites
// r0 later
nop
nop
nop
nop
nop
nop
nop
nop
// 10 instructions// 5 cycles
nop
nop
nop
nop
// Register file can now be written
lda r0, scb_v_procmchk(r31) // SCB vector
mfpr r13, pt_mces // Get MCES
sll r0, 16, r0 // Move SCBv to correct position
bis r13, BIT(mces_v_mchk), r14 // Set MCES<MCHK> bit
zap r14, 0x3C, r14 // Clear mchk_code word and SCBv word
mtpr r14, pt_mces
// 20 instructions
nop
or r14, r0, r14 // Insert new SCB vector
lda r0, mchk_c_proc_hrd_error(r31) // MCHK code
mfpr r12, exc_addr
sll r0, 32, r0 // Move MCHK code to correct position
mtpr r4, pt4
or r14, r0, r14 // Insert new MCHK code
mtpr r14, pt_misc // Store updated MCES, MCHK code, and SCBv
ldah r14, 0xfff0(r31)
mtpr r1, pt1 // Stash for scratch - 30 instructions
zap r14, 0xE0, r14 // Get Cbox IPR base
mtpr r12, pt10 // Stash exc_addr
mtpr r31, ic_flush_ctl // Second Icache flush, now it is really flushed.
blbs r13, sys_double_machine_check // MCHK halt if double machine check
mtpr r6, pt6
mtpr r5, pt5
// Look for the powerfail cases here....
mfpr r4, isr
srl r4, isr_v_pfl, r4
blbc r4, sys_mchk_collect_iprs // skip if no powerfail interrupt pending
lda r4, 0xffc4(r31) // get GBUS$MISCR address bits
sll r4, 24, r4 // shift to proper position
ldq_p r4, 0(r4) // read GBUS$MISCR
srl r4, 5, r4 // isolate bit <5>
blbc r4, sys_mchk_collect_iprs // skip if already cleared
// No missed CFAIL mchk
lda r5, 0xffc7(r31) // get GBUS$SERNUM address bits
sll r5, 24, r5 // shift to proper position
lda r6, 0x40(r31) // get bit <6> mask
ldq_p r4, 0(r5) // read GBUS$SERNUM
or r4, r6, r6 // set bit <6>
stq_p r6, 0(r5) // clear GBUS$SERNUM<6>
mb
mb
//
// Start to collect the IPRs. Common entry point for mchk flows.
//
// Current state:
// pt0 - saved r0
// pt1 - saved r1
// pt4 - saved r4
// pt5 - saved r5
// pt6 - saved r6
// pt10 - saved exc_addr
// pt_misc<47:32> - mchk code
// pt_misc<31:16> - scb vector
// r14 - base of Cbox IPRs in IO space
// r0, r1, r4, r5, r6, r12, r13, r25 - available
// r8, r9, r10 - available as all loads are physical
// MCES<mchk> is set
//
//
EXPORT(sys_mchk_collect_iprs)
.long 0x4000054 // call M5 Panic
//mb // MB before reading Scache IPRs
mfpr r1, icperr_stat
mfpr r8, dcperr_stat
mtpr r31, dc_flush // Flush the Dcache
mfpr r31, pt0 // Pad Mbox instructions from dc_flush
mfpr r31, pt0
nop
nop
ldq_p r9, sc_addr(r14) // SC_ADDR IPR
bis r9, r31, r31 // Touch ld to make sure it completes before
// read of SC_STAT
ldq_p r10, sc_stat(r14) // SC_STAT, also unlocks SC_ADDR
ldq_p r12, ei_addr(r14) // EI_ADDR IPR
ldq_p r13, bc_tag_addr(r14) // BC_TAG_ADDR IPR
ldq_p r0, fill_syn(r14) // FILL_SYN IPR
bis r12, r13, r31 // Touch lds to make sure they complete before reading EI_STAT
bis r0, r0, r31 // Touch lds to make sure they complete before reading EI_STAT
ldq_p r25, ei_stat(r14) // EI_STAT, unlock EI_ADDR, BC_TAG_ADDR, FILL_SYN
ldq_p r31, ei_stat(r14) // Read again to insure it is unlocked
//
// Look for nonretryable cases
// In this segment:
// r5<0> = 1 means retryable
// r4, r6, and r14 are available for scratch
//
//
bis r31, r31, r5 // Clear local retryable flag
srl r25, ei_stat_v_bc_tperr, r25 // Move EI_STAT status bits to low bits
lda r4, 1(r31)
sll r4, icperr_stat_v_tmr, r4
and r1, r4, r4 // Timeout reset
bne r4, sys_cpu_mchk_not_retryable
and r8, BIT(dcperr_stat_v_lock), r4 // DCache parity error locked
bne r4, sys_cpu_mchk_not_retryable
lda r4, 1(r31)
sll r4, sc_stat_v_sc_scnd_err, r4
and r10, r4, r4 // 2nd Scache error occurred
bne r4, sys_cpu_mchk_not_retryable
bis r31, 0xa3, r4 // EI_STAT Bcache Tag Parity Error, Bcache Tag Control
// Parity Error, Interface Parity Error, 2nd Error
and r25, r4, r4
bne r4, sys_cpu_mchk_not_retryable
// bis r31, #<1@<ei_stat$v_unc_ecc_err-ei_stat$v_bc_tperr>>, r4
bis r31, BIT((ei_stat_v_unc_ecc_err-ei_stat_v_bc_tperr)), r4
and r25, r4, r4 // Isolate the Uncorrectable Error Bit
// bis r31, #<1@<ei_stat$v_fil_ird-ei_stat$v_bc_tperr>>, r6
bis r31, BIT((ei_stat_v_fil_ird-ei_stat_v_bc_tperr)), r6 // Isolate the Iread bit
cmovne r6, 0, r4 // r4 = 0 if IRD or if No Uncorrectable Error
bne r4, sys_cpu_mchk_not_retryable
lda r4, 7(r31)
and r10, r4, r4 // Isolate the Scache Tag Parity Error bits
bne r4, sys_cpu_mchk_not_retryable // All Scache Tag PEs are not retryable
lda r4, 0x7f8(r31)
and r10, r4, r4 // Isolate the Scache Data Parity Error bits
srl r10, sc_stat_v_cbox_cmd, r6
and r6, 0x1f, r6 // Isolate Scache Command field
subq r6, 1, r6 // Scache Iread command = 1
cmoveq r6, 0, r4 // r4 = 0 if IRD or if No Parity Error
bne r4, sys_cpu_mchk_not_retryable
// Look for the system unretryable cases here....
mfpr r4, isr // mchk_interrupt pin asserted
srl r4, isr_v_mck, r4
blbs r4, sys_cpu_mchk_not_retryable
//
// Look for retryable cases
// In this segment:
// r5<0> = 1 means retryable
// r6 - holds the mchk code
// r4 and r14 are available for scratch
//
//
// Within the chip, the retryable cases are Istream errors
lda r4, 3(r31)
sll r4, icperr_stat_v_dpe, r4
and r1, r4, r4
cmovne r4, 1, r5 // Retryable if just Icache parity error
lda r4, 0x7f8(r31)
and r10, r4, r4 // Isolate the Scache Data Parity Error bits
srl r10, sc_stat_v_cbox_cmd, r14
and r14, 0x1f, r14 // Isolate Scache Command field
subq r14, 1, r14 // Scache Iread command = 1
cmovne r4, 1, r4 // r4 = 1 if Scache data parity error bit set
cmovne r14, 0, r4 // r4 = 1 if Scache PE and Iread
bis r4, r5, r5 // Accumulate
bis r31, BIT((ei_stat_v_unc_ecc_err-ei_stat_v_bc_tperr)), r4
and r25, r4, r4 // Isolate the Uncorrectable Error Bit
and r25, BIT((ei_stat_v_fil_ird-ei_stat_v_bc_tperr)), r14 // Isolate the Iread bit
cmovne r4, 1, r4 // r4 = 1 if uncorr error
cmoveq r14, 0, r4 // r4 = 1 if uncorr and Iread
bis r4, r5, r5 // Accumulate
mfpr r6, pt_misc
extwl r6, 4, r6 // Fetch mchk code
bic r6, 1, r6 // Clear flag from interrupt flow
cmovne r5, mchk_c_retryable_ird, r6 // Set mchk code
//
// Write the logout frame
//
// Current state:
// r0 - fill_syn
// r1 - icperr_stat
// r4 - available
// r5<0> - retry flag
// r6 - mchk code
// r8 - dcperr_stat
// r9 - sc_addr
// r10 - sc_stat
// r12 - ei_addr
// r13 - bc_tag_addr
// r14 - available
// r25 - ei_stat (shifted)
// pt0 - saved r0
// pt1 - saved r1
// pt4 - saved r4
// pt5 - saved r5
// pt6 - saved r6
// pt10 - saved exc_addr
//
//
sys_mchk_write_logout_frame:
// Get base of the logout area.
GET_IMPURE(r14) // addr of per-cpu impure area
GET_ADDR(r14,pal_logout_area+mchk_mchk_base,r14)
// Write the first 2 quadwords of the logout area:
sll r5, 63, r5 // Move retry flag to bit 63
lda r4, mchk_size(r5) // Combine retry flag and frame size
stq_p r4, mchk_flag(r14) // store flag/frame size
lda r4, mchk_sys_base(r31) // sys offset
sll r4, 32, r4
lda r4, mchk_cpu_base(r4) // cpu offset
stq_p r4, mchk_offsets(r14) // store sys offset/cpu offset into logout frame
//
// Write the mchk code to the logout area
// Write error IPRs already fetched to the logout area
// Restore some GPRs from PALtemps
//
mfpr r5, pt5
stq_p r6, mchk_mchk_code(r14)
mfpr r4, pt4
stq_p r1, mchk_ic_perr_stat(r14)
mfpr r6, pt6
stq_p r8, mchk_dc_perr_stat(r14)
mfpr r1, pt1
stq_p r9, mchk_sc_addr(r14)
stq_p r10, mchk_sc_stat(r14)
stq_p r12, mchk_ei_addr(r14)
stq_p r13, mchk_bc_tag_addr(r14)
stq_p r0, mchk_fill_syn(r14)
mfpr r0, pt0
sll r25, ei_stat_v_bc_tperr, r25 // Move EI_STAT status bits back to expected position
// retrieve lower 28 bits again from ei_stat and restore before storing to logout frame
ldah r13, 0xfff0(r31)
zapnot r13, 0x1f, r13
ldq_p r13, ei_stat(r13)
sll r13, 64-ei_stat_v_bc_tperr, r13
srl r13, 64-ei_stat_v_bc_tperr, r13
or r25, r13, r25
stq_p r25, mchk_ei_stat(r14)
//
// complete the CPU-specific part of the logout frame
//
ldah r13, 0xfff0(r31)
zap r13, 0xE0, r13 // Get Cbox IPR base
ldq_p r13, ld_lock(r13) // Get ld_lock IPR
stq_p r13, mchk_ld_lock(r14) // and stash it in the frame
// Unlock IPRs
lda r8, (BIT(dcperr_stat_v_lock)|BIT(dcperr_stat_v_seo))(r31)
mtpr r8, dcperr_stat // Clear Dcache parity error status
lda r8, (BIT(icperr_stat_v_dpe)|BIT(icperr_stat_v_tpe)|BIT(icperr_stat_v_tmr))(r31)
mtpr r8, icperr_stat // Clear Icache parity error & timeout status
1: ldq_p r8, mchk_ic_perr_stat(r14) // get ICPERR_STAT value
GET_ADDR(r0,0x1800,r31) // get ICPERR_STAT value
and r0, r8, r0 // compare
beq r0, 2f // check next case if nothing set
lda r0, mchk_c_retryable_ird(r31) // set new MCHK code
br r31, do_670 // setup new vector
2: ldq_p r8, mchk_dc_perr_stat(r14) // get DCPERR_STAT value
GET_ADDR(r0,0x3f,r31) // get DCPERR_STAT value
and r0, r8, r0 // compare
beq r0, 3f // check next case if nothing set
lda r0, mchk_c_dcperr(r31) // set new MCHK code
br r31, do_670 // setup new vector
3: ldq_p r8, mchk_sc_stat(r14) // get SC_STAT value
GET_ADDR(r0,0x107ff,r31) // get SC_STAT value
and r0, r8, r0 // compare
beq r0, 4f // check next case if nothing set
lda r0, mchk_c_scperr(r31) // set new MCHK code
br r31, do_670 // setup new vector
4: ldq_p r8, mchk_ei_stat(r14) // get EI_STAT value
GET_ADDR(r0,0x30000000,r31) // get EI_STAT value
and r0, r8, r0 // compare
beq r0, 5f // check next case if nothing set
lda r0, mchk_c_bcperr(r31) // set new MCHK code
br r31, do_670 // setup new vector
5: ldl_p r8, mchk_tlber(r14) // get TLBER value
GET_ADDR(r0,0xfe01,r31) // get high TLBER mask value
sll r0, 16, r0 // shift into proper position
GET_ADDR(r1,0x03ff,r31) // get low TLBER mask value
or r0, r1, r0 // merge mask values
and r0, r8, r0 // compare
beq r0, 6f // check next case if nothing set
GET_ADDR(r0, 0xfff0, r31) // set new MCHK code
br r31, do_660 // setup new vector
6: ldl_p r8, mchk_tlepaerr(r14) // get TLEPAERR value
GET_ADDR(r0,0xff7f,r31) // get TLEPAERR mask value
and r0, r8, r0 // compare
beq r0, 7f // check next case if nothing set
GET_ADDR(r0, 0xfffa, r31) // set new MCHK code
br r31, do_660 // setup new vector
7: ldl_p r8, mchk_tlepderr(r14) // get TLEPDERR value
GET_ADDR(r0,0x7,r31) // get TLEPDERR mask value
and r0, r8, r0 // compare
beq r0, 8f // check next case if nothing set
GET_ADDR(r0, 0xfffb, r31) // set new MCHK code
br r31, do_660 // setup new vector
8: ldl_p r8, mchk_tlepmerr(r14) // get TLEPMERR value
GET_ADDR(r0,0x3f,r31) // get TLEPMERR mask value
and r0, r8, r0 // compare
beq r0, 9f // check next case if nothing set
GET_ADDR(r0, 0xfffc, r31) // set new MCHK code
br r31, do_660 // setup new vector
9: ldq_p r8, mchk_ei_stat(r14) // get EI_STAT value
GET_ADDR(r0,0xb,r31) // get EI_STAT mask value
sll r0, 32, r0 // shift to upper lw
and r0, r8, r0 // compare
beq r0, 1f // check next case if nothing set
GET_ADDR(r0,0xfffd,r31) // set new MCHK code
br r31, do_660 // setup new vector
1: ldl_p r8, mchk_tlepaerr(r14) // get TLEPAERR value
GET_ADDR(r0,0x80,r31) // get TLEPAERR mask value
and r0, r8, r0 // compare
beq r0, cont_logout_frame // check next case if nothing set
GET_ADDR(r0, 0xfffe, r31) // set new MCHK code
br r31, do_660 // setup new vector
do_670: lda r8, scb_v_procmchk(r31) // SCB vector
br r31, do_6x0_cont
do_660: lda r8, scb_v_sysmchk(r31) // SCB vector
do_6x0_cont:
sll r8, 16, r8 // shift to proper position
mfpr r1, pt_misc // fetch current pt_misc
GET_ADDR(r4,0xffff, r31) // mask for vector field
sll r4, 16, r4 // shift to proper position
bic r1, r4, r1 // clear out old vector field
or r1, r8, r1 // merge in new vector
mtpr r1, pt_misc // save new vector field
stl_p r0, mchk_mchk_code(r14) // save new mchk code
cont_logout_frame:
// Restore some GPRs from PALtemps
mfpr r0, pt0
mfpr r1, pt1
mfpr r4, pt4
mfpr r12, pt10 // fetch original PC
blbs r12, sys_machine_check_while_in_pal // MCHK halt if machine check in pal
//XXXbugnion pvc_jsr armc, bsr=1
bsr r12, sys_arith_and_mchk // go check for and deal with arith trap
mtpr r31, exc_sum // Clear Exception Summary
mfpr r25, pt10 // write exc_addr after arith_and_mchk to pickup new pc
stq_p r25, mchk_exc_addr(r14)
//
// Set up the km trap
//
sys_post_mchk_trap:
mfpr r25, pt_misc // Check for flag from mchk interrupt
extwl r25, 4, r25
blbs r25, sys_mchk_stack_done // Stack from already pushed if from interrupt flow
bis r14, r31, r12 // stash pointer to logout area
mfpr r14, pt10 // get exc_addr
sll r11, 63-3, r25 // get mode to msb
bge r25, 3f
mtpr r31, dtb_cm
mtpr r31, ev5__ps
mtpr r30, pt_usp // save user stack
mfpr r30, pt_ksp
3:
lda sp, 0-osfsf_c_size(sp) // allocate stack space
nop
stq r18, osfsf_a2(sp) // a2
stq r11, osfsf_ps(sp) // save ps
stq r14, osfsf_pc(sp) // save pc
mfpr r25, pt_entint // get the VA of the interrupt routine
stq r16, osfsf_a0(sp) // a0
lda r16, osfint_c_mchk(r31) // flag as mchk in a0
stq r17, osfsf_a1(sp) // a1
mfpr r17, pt_misc // get vector
stq r29, osfsf_gp(sp) // old gp
mtpr r25, exc_addr //
or r31, 7, r11 // get new ps (km, high ipl)
subq r31, 1, r18 // get a -1
extwl r17, 2, r17 // a1 <- interrupt vector
bis r31, ipl_machine_check, r25
mtpr r25, ipl // Set internal ipl
srl r18, 42, r18 // shift off low bits of kseg addr
sll r18, 42, r18 // shift back into position
mfpr r29, pt_kgp // get the kern r29
or r12, r18, r18 // EV4 algorithm - pass pointer to mchk frame as kseg address
hw_rei_spe // out to interrupt dispatch routine
//
// The stack is pushed. Load up a0,a1,a2 and vector via entInt
//
//
ALIGN_BRANCH
sys_mchk_stack_done:
lda r16, osfint_c_mchk(r31) // flag as mchk/crd in a0
lda r17, scb_v_sysmchk(r31) // a1 <- interrupt vector
subq r31, 1, r18 // get a -1
mfpr r25, pt_entInt
srl r18, 42, r18 // shift off low bits of kseg addr
mtpr r25, exc_addr // load interrupt vector
sll r18, 42, r18 // shift back into position
or r14, r18, r18 // EV4 algorithm - pass pointer to mchk frame as kseg address
hw_rei_spe // done
ALIGN_BRANCH
sys_cpu_mchk_not_retryable:
mfpr r6, pt_misc
extwl r6, 4, r6 // Fetch mchk code
br r31, sys_mchk_write_logout_frame //
//
//sys_double_machine_check - a machine check was started, but MCES<MCHK> was
// already set. We will now double machine check halt.
//
// pt0 - old R0
//
//
EXPORT(sys_double_machine_check)
lda r0, hlt_c_dbl_mchk(r31)
br r31, sys_enter_console
//
// sys_machine_check_while_in_pal - a machine check was started,
// exc_addr points to a PAL PC. We will now machine check halt.
//
// pt0 - old R0
//
//
sys_machine_check_while_in_pal:
stq_p r12, mchk_exc_addr(r14) // exc_addr has not yet been written
lda r0, hlt_c_mchk_from_pal(r31)
br r31, sys_enter_console
//ARITH and MCHK
// Check for arithmetic errors and build trap frame,
// but don't post the trap.
// on entry:
// pt10 - exc_addr
// r12 - return address
// r14 - logout frame pointer
// r13 - available
// r8,r9,r10 - available except across stq's
// pt0,1,6 - available
//
// on exit:
// pt10 - new exc_addr
// r17 = exc_mask
// r16 = exc_sum
// r14 - logout frame pointer
//
ALIGN_BRANCH
sys_arith_and_mchk:
mfpr r13, ev5__exc_sum
srl r13, exc_sum_v_swc, r13
bne r13, handle_arith_and_mchk
// XXX bugnion pvc$jsr armc, bsr=1, dest=1
ret r31, (r12) // return if no outstanding arithmetic error
handle_arith_and_mchk:
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel
// no virt ref for next 2 cycles
mtpr r14, pt0
mtpr r1, pt1 // get a scratch reg
and r11, osfps_m_mode, r1 // get mode bit
bis r11, r31, r25 // save ps
beq r1, 1f // if zero we are in kern now
bis r31, r31, r25 // set the new ps
mtpr r30, pt_usp // save user stack
mfpr r30, pt_ksp // get kern stack
1:
mfpr r14, exc_addr // get pc into r14 in case stack writes fault
lda sp, 0-osfsf_c_size(sp) // allocate stack space
mtpr r31, ev5__ps // Set Ibox current mode to kernel
mfpr r1, pt_entArith
stq r14, osfsf_pc(sp) // save pc
stq r17, osfsf_a1(sp)
mfpr r17, ev5__exc_mask // Get exception register mask IPR - no mtpr exc_sum in next cycle
stq r29, osfsf_gp(sp)
stq r16, osfsf_a0(sp) // save regs
bis r13, r31, r16 // move exc_sum to r16
stq r18, osfsf_a2(sp)
stq r11, osfsf_ps(sp) // save ps
mfpr r29, pt_kgp // get the kern gp
mfpr r14, pt0 // restore logout frame pointer from pt0
bis r25, r31, r11 // set new ps
mtpr r1, pt10 // Set new PC
mfpr r1, pt1
// XXX bugnion pvc$jsr armc, bsr=1, dest=1
ret r31, (r12) // return if no outstanding arithmetic error
// sys_enter_console - Common PALcode for ENTERING console
//
// Entry:
// Entered when PAL wants to enter the console.
// usually as the result of a HALT instruction or button,
// or catastrophic error.
//
// Regs on entry...
//
// R0 = halt code
// pt0 <- r0
//
// Function:
//
// Save all readable machine state, and "call" the console
//
// Returns:
//
//
// Notes:
//
// In these routines, once the save state routine has been executed,
// the remainder of the registers become scratchable, as the only
// "valid" copy of them is the "saved" copy.
//
// Any registers or PTs that are modified before calling the save
// routine will have there data lost. The code below will save all
// state, but will loose pt 0,4,5.
//
//
ALIGN_BLOCK
EXPORT(sys_enter_console)
mtpr r1, pt4
mtpr r3, pt5
subq r31, 1, r1
sll r1, 42, r1
ldah r1, 1(r1)
/* taken from scrmax, seems like the obvious thing to do */
mtpr r1, exc_addr
mfpr r1, pt4
mfpr r3, pt5
STALL
STALL
hw_rei_stall
//
// sys_exit_console - Common PALcode for ENTERING console
//
// Entry:
// Entered when console wants to reenter PAL.
// usually as the result of a CONTINUE.
//
//
// Regs' on entry...
//
//
// Function:
//
// Restore all readable machine state, and return to user code.
//
//
//
//
ALIGN_BLOCK
sys_exit_console:
GET_IMPURE(r1)
// clear lock and intr_flags prior to leaving console
rc r31 // clear intr_flag
// lock flag cleared by restore_state
// TB's have been flushed
ldq_p r3, (cns_gpr+(8*3))(r1) // restore r3
ldq_p r1, (cns_gpr+8)(r1) // restore r1
hw_rei_stall // back to user
// kludge_initial_pcbb - PCB for Boot use only
ALIGN_128
.globl kludge_initial_pcbb
kludge_initial_pcbb: // PCB is 128 bytes long
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
// SET_SC_BC_CTL subroutine
//
// Subroutine to set the SC_CTL, BC_CONFIG, and BC_CTL registers and
// flush the Scache
// There must be no outstanding memory references -- istream or
// dstream -- when these registers are written. EV5 prefetcher is
// difficult to turn off. So, this routine needs to be exactly 32
// instructions long// the final jmp must be in the last octaword of a
// page (prefetcher doesn't go across page)
//
//
// Register expecations:
// r0 base address of CBOX iprs
// r5 value to set sc_ctl to (flush bit is added in)
// r6 value to set bc_ctl to
// r7 value to set bc_config to
// r10 return address
// r19 old sc_ctl value
// r20 old value of bc_ctl
// r21 old value of bc_config
// r23 flush scache flag
// Register usage:
// r17 sc_ctl with flush bit cleared
// r22 loop address
//
//
set_sc_bc_ctl:
ret r31, (r10) // return to where we came from