gem5/cpu/base_cpu.cc
Kevin Lim f58d85128d Fixes so m5 compiles on gcc 3.4, which has much stricter syntax. Most changes come from templated code,
which is evaluated slightly differently than in previous versions of gcc.

arch/alpha/alpha_linux_process.cc:
    Alphabetize includes.
arch/alpha/vptr.hh:
    Change the constants that are being used for alpha pagebytes to come from the ISA.
base/random.hh:
cpu/static_inst.cc:
sim/param.cc:
    Fix up template syntax.
base/range.hh:
    Include iostream for << operator.
base/res_list.hh:
base/statistics.hh:
cpu/simple_cpu/simple_cpu.hh:
cpu/static_inst.hh:
sim/eventq.hh:
sim/param.hh:
    Fixup for templated code to resolve different scope lookup in gcc 3.4.  This defers the lookup of the
    function/variable until actual instantiation time by making it dependent on the templated class/function.
base/trace.cc:
    Fix call to new.
base/trace.hh:
    Fix up #define to have full path.
cpu/base_cpu.cc:
    Fix up call to new.
dev/etherlink.hh:
dev/ns_gige.hh:
dev/sinic.hh:
    Fixup for friend class/function declaration.  g++ 3.4 no longer allows typedefs to be declared as
    a friend class.
dev/pcidev.hh:
    Fix up re-definition of access level to params.
kern/linux/linux_syscalls.hh:
kern/tru64/tru64_syscalls.hh:
    Fix up header.  Fix up template syntax.
sim/serialize.cc:
    Include errno.h.
sim/startup.cc:
    Change startupq.  queue was getting destructed before all things had called ~StartupCallback(), which lead
    to a segfault.  This puts startupq in global space, and we allocate it ourselves.  Other code may be similar
    to this and may need changing in the future.
sim/syscall_emul.hh:
    Include cpu/exec_context.hh and sim/process.hh, as forward declarations are no longer sufficient.
sim/universe.cc:
    Include errno.h

--HG--
extra : convert_revision : e49d08ee89eb06a28351f02bafc028ca6652d5af
2005-01-14 18:34:56 -05:00

332 lines
10 KiB
C++

/*
* Copyright (c) 2002-2004 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string>
#include <sstream>
#include <iostream>
#include "base/cprintf.hh"
#include "base/loader/symtab.hh"
#include "base/misc.hh"
#include "cpu/base_cpu.hh"
#include "cpu/exec_context.hh"
#include "sim/param.hh"
#include "sim/sim_events.hh"
using namespace std;
vector<BaseCPU *> BaseCPU::cpuList;
// This variable reflects the max number of threads in any CPU. Be
// careful to only use it once all the CPUs that you care about have
// been initialized
int maxThreadsPerCPU = 1;
#ifdef FULL_SYSTEM
BaseCPU::BaseCPU(const string &_name, int _number_of_threads, bool _def_reg,
Counter max_insts_any_thread,
Counter max_insts_all_threads,
Counter max_loads_any_thread,
Counter max_loads_all_threads,
System *_system, Tick freq,
bool _function_trace, Tick _function_trace_start)
: SimObject(_name), frequency(freq), checkInterrupts(true),
deferRegistration(_def_reg), number_of_threads(_number_of_threads),
system(_system)
#else
BaseCPU::BaseCPU(const string &_name, int _number_of_threads, bool _def_reg,
Counter max_insts_any_thread,
Counter max_insts_all_threads,
Counter max_loads_any_thread,
Counter max_loads_all_threads,
bool _function_trace, Tick _function_trace_start)
: SimObject(_name), deferRegistration(_def_reg),
number_of_threads(_number_of_threads)
#endif
{
// add self to global list of CPUs
cpuList.push_back(this);
if (number_of_threads > maxThreadsPerCPU)
maxThreadsPerCPU = number_of_threads;
// allocate per-thread instruction-based event queues
comInstEventQueue = new EventQueue *[number_of_threads];
for (int i = 0; i < number_of_threads; ++i)
comInstEventQueue[i] = new EventQueue("instruction-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (max_insts_any_thread != 0)
for (int i = 0; i < number_of_threads; ++i)
new SimExitEvent(comInstEventQueue[i], max_insts_any_thread,
"a thread reached the max instruction count");
if (max_insts_all_threads != 0) {
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = number_of_threads;
for (int i = 0; i < number_of_threads; ++i)
new CountedExitEvent(comInstEventQueue[i],
"all threads reached the max instruction count",
max_insts_all_threads, *counter);
}
// allocate per-thread load-based event queues
comLoadEventQueue = new EventQueue *[number_of_threads];
for (int i = 0; i < number_of_threads; ++i)
comLoadEventQueue[i] = new EventQueue("load-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (max_loads_any_thread != 0)
for (int i = 0; i < number_of_threads; ++i)
new SimExitEvent(comLoadEventQueue[i], max_loads_any_thread,
"a thread reached the max load count");
if (max_loads_all_threads != 0) {
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = number_of_threads;
for (int i = 0; i < number_of_threads; ++i)
new CountedExitEvent(comLoadEventQueue[i],
"all threads reached the max load count",
max_loads_all_threads, *counter);
}
#ifdef FULL_SYSTEM
memset(interrupts, 0, sizeof(interrupts));
intstatus = 0;
#endif
functionTracingEnabled = false;
if (_function_trace) {
std::string filename = csprintf("ftrace.%s", name());
functionTraceStream = makeOutputStream(filename);
currentFunctionStart = currentFunctionEnd = 0;
functionEntryTick = _function_trace_start;
if (_function_trace_start == 0) {
functionTracingEnabled = true;
} else {
Event *e =
new EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace>(this,
true);
e->schedule(_function_trace_start);
}
}
}
void
BaseCPU::enableFunctionTrace()
{
functionTracingEnabled = true;
}
BaseCPU::~BaseCPU()
{
if (functionTracingEnabled)
closeOutputStream(functionTraceStream);
}
void
BaseCPU::init()
{
if (!deferRegistration)
registerExecContexts();
}
void
BaseCPU::regStats()
{
using namespace Stats;
numCycles
.name(name() + ".numCycles")
.desc("number of cpu cycles simulated")
;
int size = execContexts.size();
if (size > 1) {
for (int i = 0; i < size; ++i) {
stringstream namestr;
ccprintf(namestr, "%s.ctx%d", name(), i);
execContexts[i]->regStats(namestr.str());
}
} else if (size == 1)
execContexts[0]->regStats(name());
}
void
BaseCPU::registerExecContexts()
{
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
int cpu_id;
#ifdef FULL_SYSTEM
cpu_id = system->registerExecContext(xc);
#else
cpu_id = xc->process->registerExecContext(xc);
#endif
xc->cpu_id = cpu_id;
}
}
void
BaseCPU::switchOut()
{
// default: do nothing
}
void
BaseCPU::takeOverFrom(BaseCPU *oldCPU)
{
assert(execContexts.size() == oldCPU->execContexts.size());
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *newXC = execContexts[i];
ExecContext *oldXC = oldCPU->execContexts[i];
newXC->takeOverFrom(oldXC);
assert(newXC->cpu_id == oldXC->cpu_id);
#ifdef FULL_SYSTEM
system->replaceExecContext(newXC, newXC->cpu_id);
#else
assert(newXC->process == oldXC->process);
newXC->process->replaceExecContext(newXC, newXC->cpu_id);
#endif
}
#ifdef FULL_SYSTEM
for (int i = 0; i < NumInterruptLevels; ++i)
interrupts[i] = oldCPU->interrupts[i];
intstatus = oldCPU->intstatus;
#endif
}
#ifdef FULL_SYSTEM
void
BaseCPU::post_interrupt(int int_num, int index)
{
DPRINTF(Interrupt, "Interrupt %d:%d posted\n", int_num, index);
if (int_num < 0 || int_num >= NumInterruptLevels)
panic("int_num out of bounds\n");
if (index < 0 || index >= sizeof(uint64_t) * 8)
panic("int_num out of bounds\n");
checkInterrupts = true;
interrupts[int_num] |= 1 << index;
intstatus |= (ULL(1) << int_num);
}
void
BaseCPU::clear_interrupt(int int_num, int index)
{
DPRINTF(Interrupt, "Interrupt %d:%d cleared\n", int_num, index);
if (int_num < 0 || int_num >= NumInterruptLevels)
panic("int_num out of bounds\n");
if (index < 0 || index >= sizeof(uint64_t) * 8)
panic("int_num out of bounds\n");
interrupts[int_num] &= ~(1 << index);
if (interrupts[int_num] == 0)
intstatus &= ~(ULL(1) << int_num);
}
void
BaseCPU::clear_interrupts()
{
DPRINTF(Interrupt, "Interrupts all cleared\n");
memset(interrupts, 0, sizeof(interrupts));
intstatus = 0;
}
void
BaseCPU::serialize(std::ostream &os)
{
SERIALIZE_ARRAY(interrupts, NumInterruptLevels);
SERIALIZE_SCALAR(intstatus);
}
void
BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_ARRAY(interrupts, NumInterruptLevels);
UNSERIALIZE_SCALAR(intstatus);
}
#endif // FULL_SYSTEM
void
BaseCPU::traceFunctionsInternal(Addr pc)
{
if (!debugSymbolTable)
return;
// if pc enters different function, print new function symbol and
// update saved range. Otherwise do nothing.
if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
string sym_str;
bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
currentFunctionStart,
currentFunctionEnd);
if (!found) {
// no symbol found: use addr as label
sym_str = csprintf("0x%x", pc);
currentFunctionStart = pc;
currentFunctionEnd = pc + 1;
}
ccprintf(*functionTraceStream, " (%d)\n%d: %s",
curTick - functionEntryTick, curTick, sym_str);
functionEntryTick = curTick;
}
}
DEFINE_SIM_OBJECT_CLASS_NAME("BaseCPU", BaseCPU)