c0cf76c837
so the events can be migrated on cpu switches. Create a new wrapper classe called CpuEventWrapper that works like the old wrapper class but calls the function with the xc parameter Use new CpuEventWrapper class from tick compare events on sparc src/arch/sparc/regfile.hh: Use new CpuEventWrapper class from tick compare events src/arch/sparc/ua2005.cc: Move definition to to a fullsystem only file, since it is. src/cpu/base.cc: On switch from one cpu to another CpuEvent::replaceExecContext() needs to be called on all (oldxc,newxc) pairs. --HG-- extra : convert_revision : eecf4540427cc0ddf75e19a3371cf32b56cba0f5
402 lines
11 KiB
C++
402 lines
11 KiB
C++
/*
|
|
* Copyright (c) 2002-2005 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <sstream>
|
|
|
|
#include "base/cprintf.hh"
|
|
#include "base/loader/symtab.hh"
|
|
#include "base/misc.hh"
|
|
#include "base/output.hh"
|
|
#include "cpu/base.hh"
|
|
#include "cpu/cpuevent.hh"
|
|
#include "cpu/exec_context.hh"
|
|
#include "cpu/profile.hh"
|
|
#include "cpu/sampler/sampler.hh"
|
|
#include "sim/param.hh"
|
|
#include "sim/process.hh"
|
|
#include "sim/sim_events.hh"
|
|
#include "sim/system.hh"
|
|
|
|
#include "base/trace.hh"
|
|
|
|
#if FULL_SYSTEM
|
|
#include "kern/kernel_stats.hh"
|
|
#endif
|
|
|
|
using namespace std;
|
|
|
|
vector<BaseCPU *> BaseCPU::cpuList;
|
|
|
|
// This variable reflects the max number of threads in any CPU. Be
|
|
// careful to only use it once all the CPUs that you care about have
|
|
// been initialized
|
|
int maxThreadsPerCPU = 1;
|
|
|
|
#if FULL_SYSTEM
|
|
BaseCPU::BaseCPU(Params *p)
|
|
: SimObject(p->name), clock(p->clock), checkInterrupts(true),
|
|
params(p), number_of_threads(p->numberOfThreads), system(p->system)
|
|
#else
|
|
BaseCPU::BaseCPU(Params *p)
|
|
: SimObject(p->name), clock(p->clock), params(p),
|
|
number_of_threads(p->numberOfThreads), system(p->system)
|
|
#endif
|
|
{
|
|
DPRINTF(FullCPU, "BaseCPU: Creating object, mem address %#x.\n", this);
|
|
|
|
// add self to global list of CPUs
|
|
cpuList.push_back(this);
|
|
|
|
DPRINTF(FullCPU, "BaseCPU: CPU added to cpuList, mem address %#x.\n",
|
|
this);
|
|
|
|
if (number_of_threads > maxThreadsPerCPU)
|
|
maxThreadsPerCPU = number_of_threads;
|
|
|
|
// allocate per-thread instruction-based event queues
|
|
comInstEventQueue = new EventQueue *[number_of_threads];
|
|
for (int i = 0; i < number_of_threads; ++i)
|
|
comInstEventQueue[i] = new EventQueue("instruction-based event queue");
|
|
|
|
//
|
|
// set up instruction-count-based termination events, if any
|
|
//
|
|
if (p->max_insts_any_thread != 0)
|
|
for (int i = 0; i < number_of_threads; ++i)
|
|
new SimExitEvent(comInstEventQueue[i], p->max_insts_any_thread,
|
|
"a thread reached the max instruction count");
|
|
|
|
if (p->max_insts_all_threads != 0) {
|
|
// allocate & initialize shared downcounter: each event will
|
|
// decrement this when triggered; simulation will terminate
|
|
// when counter reaches 0
|
|
int *counter = new int;
|
|
*counter = number_of_threads;
|
|
for (int i = 0; i < number_of_threads; ++i)
|
|
new CountedExitEvent(comInstEventQueue[i],
|
|
"all threads reached the max instruction count",
|
|
p->max_insts_all_threads, *counter);
|
|
}
|
|
|
|
// allocate per-thread load-based event queues
|
|
comLoadEventQueue = new EventQueue *[number_of_threads];
|
|
for (int i = 0; i < number_of_threads; ++i)
|
|
comLoadEventQueue[i] = new EventQueue("load-based event queue");
|
|
|
|
//
|
|
// set up instruction-count-based termination events, if any
|
|
//
|
|
if (p->max_loads_any_thread != 0)
|
|
for (int i = 0; i < number_of_threads; ++i)
|
|
new SimExitEvent(comLoadEventQueue[i], p->max_loads_any_thread,
|
|
"a thread reached the max load count");
|
|
|
|
if (p->max_loads_all_threads != 0) {
|
|
// allocate & initialize shared downcounter: each event will
|
|
// decrement this when triggered; simulation will terminate
|
|
// when counter reaches 0
|
|
int *counter = new int;
|
|
*counter = number_of_threads;
|
|
for (int i = 0; i < number_of_threads; ++i)
|
|
new CountedExitEvent(comLoadEventQueue[i],
|
|
"all threads reached the max load count",
|
|
p->max_loads_all_threads, *counter);
|
|
}
|
|
|
|
#if FULL_SYSTEM
|
|
memset(interrupts, 0, sizeof(interrupts));
|
|
intstatus = 0;
|
|
#endif
|
|
|
|
functionTracingEnabled = false;
|
|
if (p->functionTrace) {
|
|
functionTraceStream = simout.find(csprintf("ftrace.%s", name()));
|
|
currentFunctionStart = currentFunctionEnd = 0;
|
|
functionEntryTick = p->functionTraceStart;
|
|
|
|
if (p->functionTraceStart == 0) {
|
|
functionTracingEnabled = true;
|
|
} else {
|
|
Event *e =
|
|
new EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace>(this,
|
|
true);
|
|
e->schedule(p->functionTraceStart);
|
|
}
|
|
}
|
|
#if FULL_SYSTEM
|
|
profileEvent = NULL;
|
|
if (params->profile)
|
|
profileEvent = new ProfileEvent(this, params->profile);
|
|
|
|
kernelStats = new Kernel::Statistics(system);
|
|
#endif
|
|
|
|
}
|
|
|
|
BaseCPU::Params::Params()
|
|
{
|
|
#if FULL_SYSTEM
|
|
profile = false;
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BaseCPU::enableFunctionTrace()
|
|
{
|
|
functionTracingEnabled = true;
|
|
}
|
|
|
|
BaseCPU::~BaseCPU()
|
|
{
|
|
#if FULL_SYSTEM
|
|
if (kernelStats)
|
|
delete kernelStats;
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BaseCPU::init()
|
|
{
|
|
if (!params->deferRegistration)
|
|
registerExecContexts();
|
|
}
|
|
|
|
void
|
|
BaseCPU::startup()
|
|
{
|
|
#if FULL_SYSTEM
|
|
if (!params->deferRegistration && profileEvent)
|
|
profileEvent->schedule(curTick);
|
|
#endif
|
|
}
|
|
|
|
|
|
void
|
|
BaseCPU::regStats()
|
|
{
|
|
using namespace Stats;
|
|
|
|
numCycles
|
|
.name(name() + ".numCycles")
|
|
.desc("number of cpu cycles simulated")
|
|
;
|
|
|
|
int size = execContexts.size();
|
|
if (size > 1) {
|
|
for (int i = 0; i < size; ++i) {
|
|
stringstream namestr;
|
|
ccprintf(namestr, "%s.ctx%d", name(), i);
|
|
execContexts[i]->regStats(namestr.str());
|
|
}
|
|
} else if (size == 1)
|
|
execContexts[0]->regStats(name());
|
|
|
|
#if FULL_SYSTEM
|
|
if (kernelStats)
|
|
kernelStats->regStats(name() + ".kern");
|
|
#endif
|
|
}
|
|
|
|
|
|
void
|
|
BaseCPU::registerExecContexts()
|
|
{
|
|
for (int i = 0; i < execContexts.size(); ++i) {
|
|
ExecContext *xc = execContexts[i];
|
|
|
|
#if FULL_SYSTEM
|
|
int id = params->cpu_id;
|
|
if (id != -1)
|
|
id += i;
|
|
|
|
xc->setCpuId(system->registerExecContext(xc, id));
|
|
#else
|
|
xc->setCpuId(xc->getProcessPtr()->registerExecContext(xc));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
BaseCPU::switchOut(Sampler *sampler)
|
|
{
|
|
panic("This CPU doesn't support sampling!");
|
|
}
|
|
|
|
void
|
|
BaseCPU::takeOverFrom(BaseCPU *oldCPU)
|
|
{
|
|
assert(execContexts.size() == oldCPU->execContexts.size());
|
|
|
|
for (int i = 0; i < execContexts.size(); ++i) {
|
|
ExecContext *newXC = execContexts[i];
|
|
ExecContext *oldXC = oldCPU->execContexts[i];
|
|
|
|
newXC->takeOverFrom(oldXC);
|
|
|
|
CpuEvent::replaceExecContext(oldXC, newXC);
|
|
|
|
assert(newXC->readCpuId() == oldXC->readCpuId());
|
|
#if FULL_SYSTEM
|
|
system->replaceExecContext(newXC, newXC->readCpuId());
|
|
#else
|
|
assert(newXC->getProcessPtr() == oldXC->getProcessPtr());
|
|
newXC->getProcessPtr()->replaceExecContext(newXC, newXC->readCpuId());
|
|
#endif
|
|
}
|
|
|
|
#if FULL_SYSTEM
|
|
for (int i = 0; i < TheISA::NumInterruptLevels; ++i)
|
|
interrupts[i] = oldCPU->interrupts[i];
|
|
intstatus = oldCPU->intstatus;
|
|
|
|
for (int i = 0; i < execContexts.size(); ++i)
|
|
execContexts[i]->profileClear();
|
|
|
|
if (profileEvent)
|
|
profileEvent->schedule(curTick);
|
|
#endif
|
|
}
|
|
|
|
|
|
#if FULL_SYSTEM
|
|
BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, int _interval)
|
|
: Event(&mainEventQueue), cpu(_cpu), interval(_interval)
|
|
{ }
|
|
|
|
void
|
|
BaseCPU::ProfileEvent::process()
|
|
{
|
|
for (int i = 0, size = cpu->execContexts.size(); i < size; ++i) {
|
|
ExecContext *xc = cpu->execContexts[i];
|
|
xc->profileSample();
|
|
}
|
|
|
|
schedule(curTick + interval);
|
|
}
|
|
|
|
void
|
|
BaseCPU::post_interrupt(int int_num, int index)
|
|
{
|
|
DPRINTF(Interrupt, "Interrupt %d:%d posted\n", int_num, index);
|
|
|
|
if (int_num < 0 || int_num >= TheISA::NumInterruptLevels)
|
|
panic("int_num out of bounds\n");
|
|
|
|
if (index < 0 || index >= sizeof(uint64_t) * 8)
|
|
panic("int_num out of bounds\n");
|
|
|
|
checkInterrupts = true;
|
|
interrupts[int_num] |= 1 << index;
|
|
intstatus |= (ULL(1) << int_num);
|
|
}
|
|
|
|
void
|
|
BaseCPU::clear_interrupt(int int_num, int index)
|
|
{
|
|
DPRINTF(Interrupt, "Interrupt %d:%d cleared\n", int_num, index);
|
|
|
|
if (int_num < 0 || int_num >= TheISA::NumInterruptLevels)
|
|
panic("int_num out of bounds\n");
|
|
|
|
if (index < 0 || index >= sizeof(uint64_t) * 8)
|
|
panic("int_num out of bounds\n");
|
|
|
|
interrupts[int_num] &= ~(1 << index);
|
|
if (interrupts[int_num] == 0)
|
|
intstatus &= ~(ULL(1) << int_num);
|
|
}
|
|
|
|
void
|
|
BaseCPU::clear_interrupts()
|
|
{
|
|
DPRINTF(Interrupt, "Interrupts all cleared\n");
|
|
|
|
memset(interrupts, 0, sizeof(interrupts));
|
|
intstatus = 0;
|
|
}
|
|
|
|
|
|
void
|
|
BaseCPU::serialize(std::ostream &os)
|
|
{
|
|
SERIALIZE_ARRAY(interrupts, TheISA::NumInterruptLevels);
|
|
SERIALIZE_SCALAR(intstatus);
|
|
|
|
#if FULL_SYSTEM
|
|
if (kernelStats)
|
|
kernelStats->serialize(os);
|
|
#endif
|
|
|
|
}
|
|
|
|
void
|
|
BaseCPU::unserialize(Checkpoint *cp, const std::string §ion)
|
|
{
|
|
UNSERIALIZE_ARRAY(interrupts, TheISA::NumInterruptLevels);
|
|
UNSERIALIZE_SCALAR(intstatus);
|
|
|
|
#if FULL_SYSTEM
|
|
if (kernelStats)
|
|
kernelStats->unserialize(cp, section);
|
|
#endif
|
|
}
|
|
|
|
#endif // FULL_SYSTEM
|
|
|
|
void
|
|
BaseCPU::traceFunctionsInternal(Addr pc)
|
|
{
|
|
if (!debugSymbolTable)
|
|
return;
|
|
|
|
// if pc enters different function, print new function symbol and
|
|
// update saved range. Otherwise do nothing.
|
|
if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
|
|
string sym_str;
|
|
bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
|
|
currentFunctionStart,
|
|
currentFunctionEnd);
|
|
|
|
if (!found) {
|
|
// no symbol found: use addr as label
|
|
sym_str = csprintf("0x%x", pc);
|
|
currentFunctionStart = pc;
|
|
currentFunctionEnd = pc + 1;
|
|
}
|
|
|
|
ccprintf(*functionTraceStream, " (%d)\n%d: %s",
|
|
curTick - functionEntryTick, curTick, sym_str);
|
|
functionEntryTick = curTick;
|
|
}
|
|
}
|
|
|
|
|
|
DEFINE_SIM_OBJECT_CLASS_NAME("BaseCPU", BaseCPU)
|