gem5/src/cpu/simple/atomic.cc
Steve Reinhardt 4d77ea7a57 cpu: fix exec tracing memory corruption bug
Accessing traceData (to call setAddress() and/or setData())
after initiating a timing translation was causing crashes,
since a failed translation could delete the traceData
object before returning.

It turns out that there was never a need to access traceData
after initiating the translation, as the traced data was
always available earlier; this ordering was merely
historical.  Furthermore, traceData->setAddress() and
traceData->setData() were being called both from the CPU
model and the ISA definition, often redundantly.

This patch standardizes all setAddress and setData calls
for memory instructions to be in the CPU models and not
in the ISA definition.  It also moves those calls above
the translation calls to eliminate the crashes.
2010-03-23 08:50:57 -07:00

744 lines
20 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
*/
#include "arch/locked_mem.hh"
#include "arch/mmaped_ipr.hh"
#include "arch/utility.hh"
#include "base/bigint.hh"
#include "config/the_isa.hh"
#include "cpu/exetrace.hh"
#include "cpu/simple/atomic.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
#include "params/AtomicSimpleCPU.hh"
#include "sim/system.hh"
using namespace std;
using namespace TheISA;
AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
: Event(CPU_Tick_Pri), cpu(c)
{
}
void
AtomicSimpleCPU::TickEvent::process()
{
cpu->tick();
}
const char *
AtomicSimpleCPU::TickEvent::description() const
{
return "AtomicSimpleCPU tick";
}
Port *
AtomicSimpleCPU::getPort(const string &if_name, int idx)
{
if (if_name == "dcache_port")
return &dcachePort;
else if (if_name == "icache_port")
return &icachePort;
else if (if_name == "physmem_port") {
hasPhysMemPort = true;
return &physmemPort;
}
else
panic("No Such Port\n");
}
void
AtomicSimpleCPU::init()
{
BaseCPU::init();
#if FULL_SYSTEM
ThreadID size = threadContexts.size();
for (ThreadID i = 0; i < size; ++i) {
ThreadContext *tc = threadContexts[i];
// initialize CPU, including PC
TheISA::initCPU(tc, tc->contextId());
}
#endif
if (hasPhysMemPort) {
bool snoop = false;
AddrRangeList pmAddrList;
physmemPort.getPeerAddressRanges(pmAddrList, snoop);
physMemAddr = *pmAddrList.begin();
}
// Atomic doesn't do MT right now, so contextId == threadId
ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
}
bool
AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
{
panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
return true;
}
Tick
AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
{
//Snooping a coherence request, just return
return 0;
}
void
AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
{
//No internal storage to update, just return
return;
}
void
AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
{
if (status == RangeChange) {
if (!snoopRangeSent) {
snoopRangeSent = true;
sendStatusChange(Port::RangeChange);
}
return;
}
panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
}
void
AtomicSimpleCPU::CpuPort::recvRetry()
{
panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
}
void
AtomicSimpleCPU::DcachePort::setPeer(Port *port)
{
Port::setPeer(port);
#if FULL_SYSTEM
// Update the ThreadContext's memory ports (Functional/Virtual
// Ports)
cpu->tcBase()->connectMemPorts(cpu->tcBase());
#endif
}
AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
: BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
simulate_data_stalls(p->simulate_data_stalls),
simulate_inst_stalls(p->simulate_inst_stalls),
icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
physmemPort(name() + "-iport", this), hasPhysMemPort(false)
{
_status = Idle;
icachePort.snoopRangeSent = false;
dcachePort.snoopRangeSent = false;
}
AtomicSimpleCPU::~AtomicSimpleCPU()
{
if (tickEvent.scheduled()) {
deschedule(tickEvent);
}
}
void
AtomicSimpleCPU::serialize(ostream &os)
{
SimObject::State so_state = SimObject::getState();
SERIALIZE_ENUM(so_state);
SERIALIZE_SCALAR(locked);
BaseSimpleCPU::serialize(os);
nameOut(os, csprintf("%s.tickEvent", name()));
tickEvent.serialize(os);
}
void
AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
SimObject::State so_state;
UNSERIALIZE_ENUM(so_state);
UNSERIALIZE_SCALAR(locked);
BaseSimpleCPU::unserialize(cp, section);
tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
}
void
AtomicSimpleCPU::resume()
{
if (_status == Idle || _status == SwitchedOut)
return;
DPRINTF(SimpleCPU, "Resume\n");
assert(system->getMemoryMode() == Enums::atomic);
changeState(SimObject::Running);
if (thread->status() == ThreadContext::Active) {
if (!tickEvent.scheduled())
schedule(tickEvent, nextCycle());
}
}
void
AtomicSimpleCPU::switchOut()
{
assert(_status == Running || _status == Idle);
_status = SwitchedOut;
tickEvent.squash();
}
void
AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
assert(!tickEvent.scheduled());
// if any of this CPU's ThreadContexts are active, mark the CPU as
// running and schedule its tick event.
ThreadID size = threadContexts.size();
for (ThreadID i = 0; i < size; ++i) {
ThreadContext *tc = threadContexts[i];
if (tc->status() == ThreadContext::Active && _status != Running) {
_status = Running;
schedule(tickEvent, nextCycle());
break;
}
}
if (_status != Running) {
_status = Idle;
}
assert(threadContexts.size() == 1);
ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
}
void
AtomicSimpleCPU::activateContext(int thread_num, int delay)
{
DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
assert(thread_num == 0);
assert(thread);
assert(_status == Idle);
assert(!tickEvent.scheduled());
notIdleFraction++;
numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
//Make sure ticks are still on multiples of cycles
schedule(tickEvent, nextCycle(curTick + ticks(delay)));
_status = Running;
}
void
AtomicSimpleCPU::suspendContext(int thread_num)
{
DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
assert(thread_num == 0);
assert(thread);
if (_status == Idle)
return;
assert(_status == Running);
// tick event may not be scheduled if this gets called from inside
// an instruction's execution, e.g. "quiesce"
if (tickEvent.scheduled())
deschedule(tickEvent);
notIdleFraction--;
_status = Idle;
}
template <class T>
Fault
AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
{
// use the CPU's statically allocated read request and packet objects
Request *req = &data_read_req;
if (traceData) {
traceData->setAddr(addr);
}
//The block size of our peer.
unsigned blockSize = dcachePort.peerBlockSize();
//The size of the data we're trying to read.
int dataSize = sizeof(T);
uint8_t * dataPtr = (uint8_t *)&data;
//The address of the second part of this access if it needs to be split
//across a cache line boundary.
Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
if(secondAddr > addr)
dataSize = secondAddr - addr;
dcache_latency = 0;
while(1) {
req->setVirt(0, addr, dataSize, flags, thread->readPC());
// translate to physical address
Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
// Now do the access.
if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
Packet pkt = Packet(req,
req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
Packet::Broadcast);
pkt.dataStatic(dataPtr);
if (req->isMmapedIpr())
dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
else {
if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
dcache_latency += physmemPort.sendAtomic(&pkt);
else
dcache_latency += dcachePort.sendAtomic(&pkt);
}
dcache_access = true;
assert(!pkt.isError());
if (req->isLLSC()) {
TheISA::handleLockedRead(thread, req);
}
}
// This will need a new way to tell if it has a dcache attached.
if (req->isUncacheable())
recordEvent("Uncached Read");
//If there's a fault, return it
if (fault != NoFault) {
if (req->isPrefetch()) {
return NoFault;
} else {
return fault;
}
}
//If we don't need to access a second cache line, stop now.
if (secondAddr <= addr)
{
data = gtoh(data);
if (traceData) {
traceData->setData(data);
}
if (req->isLocked() && fault == NoFault) {
assert(!locked);
locked = true;
}
return fault;
}
/*
* Set up for accessing the second cache line.
*/
//Move the pointer we're reading into to the correct location.
dataPtr += dataSize;
//Adjust the size to get the remaining bytes.
dataSize = addr + sizeof(T) - secondAddr;
//And access the right address.
addr = secondAddr;
}
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
// use the CPU's statically allocated write request and packet objects
Request *req = &data_write_req;
if (traceData) {
traceData->setAddr(addr);
traceData->setData(data);
}
//The block size of our peer.
unsigned blockSize = dcachePort.peerBlockSize();
//The size of the data we're trying to read.
int dataSize = sizeof(T);
uint8_t * dataPtr = (uint8_t *)&data;
//The address of the second part of this access if it needs to be split
//across a cache line boundary.
Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
if(secondAddr > addr)
dataSize = secondAddr - addr;
dcache_latency = 0;
while(1) {
req->setVirt(0, addr, dataSize, flags, thread->readPC());
// translate to physical address
Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
// Now do the access.
if (fault == NoFault) {
MemCmd cmd = MemCmd::WriteReq; // default
bool do_access = true; // flag to suppress cache access
if (req->isLLSC()) {
cmd = MemCmd::StoreCondReq;
do_access = TheISA::handleLockedWrite(thread, req);
} else if (req->isSwap()) {
cmd = MemCmd::SwapReq;
if (req->isCondSwap()) {
assert(res);
req->setExtraData(*res);
}
}
if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
Packet pkt = Packet(req, cmd, Packet::Broadcast);
pkt.dataStatic(dataPtr);
if (req->isMmapedIpr()) {
dcache_latency +=
TheISA::handleIprWrite(thread->getTC(), &pkt);
} else {
//XXX This needs to be outside of the loop in order to
//work properly for cache line boundary crossing
//accesses in transendian simulations.
data = htog(data);
if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
dcache_latency += physmemPort.sendAtomic(&pkt);
else
dcache_latency += dcachePort.sendAtomic(&pkt);
}
dcache_access = true;
assert(!pkt.isError());
if (req->isSwap()) {
assert(res);
*res = pkt.get<T>();
}
}
if (res && !req->isSwap()) {
*res = req->getExtraData();
}
}
// This will need a new way to tell if it's hooked up to a cache or not.
if (req->isUncacheable())
recordEvent("Uncached Write");
//If there's a fault or we don't need to access a second cache line,
//stop now.
if (fault != NoFault || secondAddr <= addr)
{
if (req->isLocked() && fault == NoFault) {
assert(locked);
locked = false;
}
if (fault != NoFault && req->isPrefetch()) {
return NoFault;
} else {
return fault;
}
}
/*
* Set up for accessing the second cache line.
*/
//Move the pointer we're reading into to the correct location.
dataPtr += dataSize;
//Adjust the size to get the remaining bytes.
dataSize = addr + sizeof(T) - secondAddr;
//And access the right address.
addr = secondAddr;
}
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
AtomicSimpleCPU::write(Twin32_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(Twin64_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint64_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint32_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint16_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint8_t data, Addr addr,
unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
void
AtomicSimpleCPU::tick()
{
DPRINTF(SimpleCPU, "Tick\n");
Tick latency = 0;
for (int i = 0; i < width || locked; ++i) {
numCycles++;
if (!curStaticInst || !curStaticInst->isDelayedCommit())
checkForInterrupts();
checkPcEventQueue();
Fault fault = NoFault;
bool fromRom = isRomMicroPC(thread->readMicroPC());
if (!fromRom && !curMacroStaticInst) {
setupFetchRequest(&ifetch_req);
fault = thread->itb->translateAtomic(&ifetch_req, tc,
BaseTLB::Execute);
}
if (fault == NoFault) {
Tick icache_latency = 0;
bool icache_access = false;
dcache_access = false; // assume no dcache access
if (!fromRom && !curMacroStaticInst) {
// This is commented out because the predecoder would act like
// a tiny cache otherwise. It wouldn't be flushed when needed
// like the I cache. It should be flushed, and when that works
// this code should be uncommented.
//Fetch more instruction memory if necessary
//if(predecoder.needMoreBytes())
//{
icache_access = true;
Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
Packet::Broadcast);
ifetch_pkt.dataStatic(&inst);
if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
else
icache_latency = icachePort.sendAtomic(&ifetch_pkt);
assert(!ifetch_pkt.isError());
// ifetch_req is initialized to read the instruction directly
// into the CPU object's inst field.
//}
}
preExecute();
if (curStaticInst) {
fault = curStaticInst->execute(this, traceData);
// keep an instruction count
if (fault == NoFault)
countInst();
else if (traceData) {
// If there was a fault, we should trace this instruction.
delete traceData;
traceData = NULL;
}
postExecute();
}
// @todo remove me after debugging with legion done
if (curStaticInst && (!curStaticInst->isMicroop() ||
curStaticInst->isFirstMicroop()))
instCnt++;
Tick stall_ticks = 0;
if (simulate_inst_stalls && icache_access)
stall_ticks += icache_latency;
if (simulate_data_stalls && dcache_access)
stall_ticks += dcache_latency;
if (stall_ticks) {
Tick stall_cycles = stall_ticks / ticks(1);
Tick aligned_stall_ticks = ticks(stall_cycles);
if (aligned_stall_ticks < stall_ticks)
aligned_stall_ticks += 1;
latency += aligned_stall_ticks;
}
}
if(fault != NoFault || !stayAtPC)
advancePC(fault);
}
// instruction takes at least one cycle
if (latency < ticks(1))
latency = ticks(1);
if (_status != Idle)
schedule(tickEvent, curTick + latency);
}
void
AtomicSimpleCPU::printAddr(Addr a)
{
dcachePort.printAddr(a);
}
////////////////////////////////////////////////////////////////////////
//
// AtomicSimpleCPU Simulation Object
//
AtomicSimpleCPU *
AtomicSimpleCPUParams::create()
{
numThreads = 1;
#if !FULL_SYSTEM
if (workload.size() != 1)
panic("only one workload allowed");
#endif
return new AtomicSimpleCPU(this);
}