gem5/src/mem/protocol/MSI_MOSI_CMP_directory-L1cache.sm
Nathan Binkert 2f30950143 ruby: Import ruby and slicc from GEMS
We eventually plan to replace the m5 cache hierarchy with the GEMS
hierarchy, but for now we will make both live alongside eachother.
2009-05-11 10:38:43 -07:00

800 lines
28 KiB
Plaintext

/*
* Copyright (c) 1999-2005 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* $Id$
*
*/
machine(L1Cache, "MSI Directory L1 Cache CMP") {
// NODE L1 CACHE
// From this node's L1 cache TO the network
// a local L1 -> this L2 bank, currently ordered with directory forwarded requests
MessageBuffer requestFromL1Cache, network="To", virtual_network="0", ordered="true";
MessageBuffer dummyFrom1, network="To", virtual_network="1", ordered="false"; // dummy buffer that shouldn't be used
MessageBuffer dummyFrom2, network="To", virtual_network="2", ordered="false"; // dummy buffer that shouldn't be used
// a local L1 -> this L2 bank
MessageBuffer responseFromL1Cache, network="To", virtual_network="3", ordered="false";
MessageBuffer dummyFrom4, network="To", virtual_network="4", ordered="false"; // dummy buffer that shouldn't be used
// To this node's L1 cache FROM the network
MessageBuffer dummyTo0, network="From", virtual_network="0", ordered="false"; // dummy buffer that shouldn't be used
MessageBuffer dummyTo1, network="From", virtual_network="1", ordered="false"; // dummy buffer that shouldn't be used
// a L2 bank -> this L1
MessageBuffer requestToL1Cache, network="From", virtual_network="2", ordered="true";
// a L2 bank -> this L1
MessageBuffer responseToL1Cache, network="From", virtual_network="3", ordered="false";
MessageBuffer dummyTo4, network="From", virtual_network="4", ordered="false"; // dummy buffer that shouldn't be used
// STATES
enumeration(State, desc="Cache states", default="L1Cache_State_L1_I") {
// Base states
NP, desc="Not present in either cache";
L1_I, desc="a L1 cache entry Idle";
L1_S, desc="a L1 cache entry Shared";
L1_M, desc="a L1 cache entry Modified", format="!b";
// Transient States
L1_IS, desc="L1 idle, issued GETS, have not seen response yet";
L1_ISI, desc="L1 idle, issued GETS, saw INV, still waiting for data";
L1_IM, desc="L1 idle, issued GETX, have not seen response yet";
L1_IMI, desc="L1 idle, issued GETX, saw INV, still waiting for data";
L1_IMS, desc="L1 idle, issued GETX, saw DownGrade, still waiting for data";
L1_IMSI, desc="L1 idle, issued GETX, saw DownGrade, saw INV, still waiting for data";
L1_SI, desc="issued PUTS, waiting for response";
L1_MI, desc="issued PUTX, waiting for response";
}
// EVENTS
enumeration(Event, desc="Cache events") {
// L1 events
Load, desc="Load request from the home processor";
Ifetch, desc="I-fetch request from the home processor";
Store, desc="Store request from the home processor";
// L1 is required to send response to the L2 immediately
L1_INV, "INV", desc="L1 Invalidation of M data", format="!r";
L1_INV_S, "INV", desc="L1 Invalidation of S data", format="!r";
L1_DownGrade, "Force DownGrade", desc="L2 cache forces an L1 cache in M to downgrade to S and writeback result";
// receiving of data
L1_Data, "Data", desc="Data in response to an L1 request, transistion to M or S depending on request";
L1_Data_S, "Data S", desc="Data in response to an L1 request, write data then transistion to S";
L1_Data_I, "Data I", desc="Data in response to an L1 request, write data then transistion to I";
// receiving of acks
L1_PutAck, "Put Ack", desc="PutS or PutX ack from L2";
// internal generated request
// L1 request to replace block, results in either a PUTS or PUTX request
L1_Replacement, desc="L1 Replacement", format="!r";
// Currently same as replacement, request initiated when block is in the wrong L1 cache
L1_WriteBack, desc="on-chip L1 cache must write back to shared L2";
}
// TYPES
// CacheEntry
structure(Entry, desc="...", interface="AbstractCacheEntry" ) {
State CacheState, desc="cache state";
DataBlock DataBlk, desc="data for the block";
}
// TBE fields
structure(TBE, desc="...") {
Address Address, desc="Physical address for this TBE";
State TBEState, desc="Transient state";
DataBlock DataBlk, desc="Buffer for the data block";
bool isPrefetch, desc="Set if this was caused by a prefetch";
}
external_type(CacheMemory) {
bool cacheAvail(Address);
Address cacheProbe(Address);
void allocate(Address);
void deallocate(Address);
Entry lookup(Address);
void changePermission(Address, AccessPermission);
bool isTagPresent(Address);
}
external_type(TBETable) {
TBE lookup(Address);
void allocate(Address);
void deallocate(Address);
bool isPresent(Address);
}
TBETable L1_TBEs, template_hack="<L1Cache_TBE>";
CacheMemory L1IcacheMemory, template_hack="<L1Cache_Entry>", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1I"', abstract_chip_ptr="true";
CacheMemory L1DcacheMemory, template_hack="<L1Cache_Entry>", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1D"', abstract_chip_ptr="true";
MessageBuffer mandatoryQueue, ordered="false", rank="100", abstract_chip_ptr="true";
// the optionalQueue doesn't have to be ordered for correctness
// however inforcing order ensures the prefetches reach the L2 in order
MessageBuffer optionalQueue, ordered="true", rank="101", abstract_chip_ptr="true";
Sequencer sequencer, abstract_chip_ptr="true", constructor_hack="i";
int cache_state_to_int(State state);
// inclusive cache returns L1 entries only
Entry getL1CacheEntry(Address addr), return_by_ref="yes" {
if (L1DcacheMemory.isTagPresent(addr)) {
return L1DcacheMemory[addr];
} else {
return L1IcacheMemory[addr];
}
}
void changeL1Permission(Address addr, AccessPermission permission) {
if (L1DcacheMemory.isTagPresent(addr)) {
return L1DcacheMemory.changePermission(addr, permission);
} else if(L1IcacheMemory.isTagPresent(addr)) {
return L1IcacheMemory.changePermission(addr, permission);
} else {
error("cannot change permission, L1 block not present");
}
}
bool isL1CacheTagPresent(Address addr) {
return (L1DcacheMemory.isTagPresent(addr) || L1IcacheMemory.isTagPresent(addr));
}
State getState(Address addr) {
if((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == true){
DEBUG_EXPR(id);
DEBUG_EXPR(addr);
}
assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);
if(L1_TBEs.isPresent(addr)) {
return L1_TBEs[addr].TBEState;
} else if (isL1CacheTagPresent(addr)) {
return getL1CacheEntry(addr).CacheState;
}
return State:NP;
}
string getStateStr(Address addr) {
return L1Cache_State_to_string(getState(addr));
}
// when is this called?
void setState(Address addr, State state) {
assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);
// MUST CHANGE
if(L1_TBEs.isPresent(addr)) {
L1_TBEs[addr].TBEState := state;
}
if (isL1CacheTagPresent(addr)) {
getL1CacheEntry(addr).CacheState := state;
// Set permission
if (state == State:L1_I || state == State:L1_SI || state == State:L1_MI) {
changeL1Permission(addr, AccessPermission:Invalid);
} else if (state == State:L1_S) {
changeL1Permission(addr, AccessPermission:Read_Only);
} else if (state == State:L1_M) {
changeL1Permission(addr, AccessPermission:Read_Write);
} else {
changeL1Permission(addr, AccessPermission:Busy);
}
}
}
Event mandatory_request_type_to_event(CacheRequestType type) {
if (type == CacheRequestType:LD) {
return Event:Load;
} else if (type == CacheRequestType:IFETCH) {
return Event:Ifetch;
} else if ((type == CacheRequestType:ST) || (type == CacheRequestType:ATOMIC)) {
return Event:Store;
} else {
error("Invalid CacheRequestType");
}
}
// ** OUT_PORTS **
// All ports are to the same CMP network, queue id numbers determine IntraChip Switch location
out_port(requestIntraChipL1Network_out, RequestMsg, requestFromL1Cache);
out_port(responseIntraChipL1Network_out, ResponseMsg, responseFromL1Cache);
// ** IN_PORTS **
in_port(dummyTo0_in, RequestMsg, dummyTo0) {
if (dummyTo0_in.isReady()) {
peek(dummyTo0_in, RequestMsg) {
DEBUG_EXPR(in_msg.Address);
DEBUG_EXPR(machineID);
DEBUG_EXPR(in_msg.Type);
DEBUG_EXPR(getState(in_msg.Address));
DEBUG_EXPR(in_msg.RequestorMachId);
}
error("dummyTo0 port should not be used");
}
}
in_port(dummyTo1_in, RequestMsg, dummyTo1) {
if (dummyTo1_in.isReady()) {
peek(dummyTo1_in, RequestMsg) {
DEBUG_EXPR(in_msg.Address);
DEBUG_EXPR(machineID);
DEBUG_EXPR(in_msg.Type);
DEBUG_EXPR(getState(in_msg.Address));
DEBUG_EXPR(in_msg.RequestorMachId);
}
error("dummyTo1 port should not be used");
}
}
in_port(dummyTo4_in, ResponseMsg, dummyTo4) {
if (dummyTo4_in.isReady()) {
peek(dummyTo4_in, ResponseMsg) {
DEBUG_EXPR(in_msg.Address);
DEBUG_EXPR(machineID);
DEBUG_EXPR(in_msg.Type);
DEBUG_EXPR(getState(in_msg.Address));
DEBUG_EXPR(in_msg.SenderMachId);
}
error("dummyTo4 port should not be used");
}
}
// Response IntraChip L1 Network - response msg to this L1 cache
in_port(responseIntraChipL1Network_in, ResponseMsg, responseToL1Cache) {
if (responseIntraChipL1Network_in.isReady()) {
peek(responseIntraChipL1Network_in, ResponseMsg) {
DEBUG_EXPR(in_msg.Address);
DEBUG_EXPR(in_msg.Destination);
DEBUG_EXPR(in_msg.SenderMachId);
DEBUG_EXPR(machineID);
assert(in_msg.Destination.isElement(machineID));
if(machineIDToMachineType(in_msg.SenderMachId) == MachineType:L2Cache) {
if(in_msg.Type == CoherenceResponseType:DATA) {
trigger(Event:L1_Data, in_msg.Address); // L1 now has data in its desired state
} else if(in_msg.Type == CoherenceResponseType:DATA_S) {
trigger(Event:L1_Data_S, in_msg.Address); // L1 now has data but must imediately move to S state
} else if(in_msg.Type == CoherenceResponseType:DATA_I) {
trigger(Event:L1_Data_I, in_msg.Address); // L1 now has data but must imediately move to INV state
} else if(in_msg.Type == CoherenceResponseType:ACK) {
trigger(Event:L1_PutAck, in_msg.Address);
} else {
error("Invalid L1 response type");
}
} else {
error("A non-L2 cache sent a response to a L1 cache");
}
}
}
}
// Request InterChip network - request from this L1 cache to the shared L2
in_port(requestIntraChipL1Network_in, RequestMsg, requestToL1Cache) {
if(requestIntraChipL1Network_in.isReady()) {
peek(requestIntraChipL1Network_in, RequestMsg) {
assert(in_msg.Destination.isElement(machineID));
if(machineIDToMachineType(in_msg.RequestorMachId) == MachineType:L2Cache) {
if(in_msg.Type == CoherenceRequestType:L1_DG) {
trigger(Event:L1_DownGrade, in_msg.Address); // Force L1 to downgrade to S state
} else if (in_msg.Type == CoherenceRequestType:INV) {
trigger(Event:L1_INV, in_msg.Address); // L1 must invalidate it's modified version
} else if (in_msg.Type == CoherenceRequestType:INV_S) {
trigger(Event:L1_INV_S, in_msg.Address); // L1 must invalidate it's shared version
} else {
error("Invalid forwarded request type");
}
} else {
error("A non-L2 cache sent a request to a L1 cache");
}
}
}
}
// Mandatory Queue betweens Node's CPU and it's L1 caches
in_port(mandatoryQueue_in, CacheMsg, mandatoryQueue, desc="...") {
if (mandatoryQueue_in.isReady()) {
peek(mandatoryQueue_in, CacheMsg) {
// Check for data access to blocks in I-cache and ifetchs to blocks in D-cache
if (in_msg.Type == CacheRequestType:IFETCH) {
// ** INSTRUCTION ACCESS ***
// Check to see if it is in the OTHER L1
if (L1DcacheMemory.isTagPresent(in_msg.Address)) {
// The block is in the wrong L1, put the request on the queue to the shared L2
trigger(Event:L1_WriteBack, in_msg.Address);
}
if (L1IcacheMemory.isTagPresent(in_msg.Address)) {
// The tag matches for the L1, so the L1 asks the L2 for it.
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
} else {
if (L1IcacheMemory.cacheAvail(in_msg.Address)) {
// L1 does't have the line, but we have space for it in the L1 so let's see if the L2 has it
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
} else {
// No room in the L1, so we need to make room in the L1
trigger(Event:L1_Replacement, L1IcacheMemory.cacheProbe(in_msg.Address));
}
}
} else {
// *** DATA ACCESS ***
// Check to see if it is in the OTHER L1
if (L1IcacheMemory.isTagPresent(in_msg.Address)) {
// The block is in the wrong L1, put the request on the queue to the shared L2
trigger(Event:L1_WriteBack, in_msg.Address);
}
if (L1DcacheMemory.isTagPresent(in_msg.Address)) {
// The tag matches for the L1, so the L1 ask the L2 for it
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
} else {
if (L1DcacheMemory.cacheAvail(in_msg.Address)) {
// L1 does't have the line, but we have space for it in the L1 let's see if the L2 has it
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
} else {
// No room in the L1, so we need to make room in the L1
trigger(Event:L1_Replacement, L1DcacheMemory.cacheProbe(in_msg.Address));
}
}
}
}
}
}
// ACTIONS
action(a_issueGETS, "a", desc="Issue GETS") {
peek(mandatoryQueue_in, CacheMsg) {
enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETS;
out_msg.RequestorMachId := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
DEBUG_EXPR(address);
DEBUG_EXPR(out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.L1CacheStateStr := getStateStr(address);
out_msg.Prefetch := in_msg.Prefetch;
out_msg.AccessMode := in_msg.AccessMode;
}
}
}
action(b_issueGETX, "b", desc="Issue GETX") {
peek(mandatoryQueue_in, CacheMsg) {
enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETX;
out_msg.RequestorMachId := machineID;
DEBUG_EXPR(machineID);
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
DEBUG_EXPR(address);
DEBUG_EXPR(out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.L1CacheStateStr := getStateStr(address);
out_msg.Prefetch := in_msg.Prefetch;
out_msg.AccessMode := in_msg.AccessMode;
}
}
}
action(c_issueUPGRADE, "c", desc="Issue GETX") {
peek(mandatoryQueue_in, CacheMsg) {
enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:UPGRADE;
out_msg.RequestorMachId := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
DEBUG_EXPR(address);
DEBUG_EXPR(out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.L1CacheStateStr := getStateStr(address);
out_msg.Prefetch := in_msg.Prefetch;
out_msg.AccessMode := in_msg.AccessMode;
}
}
}
action(f_issueGETINSTR, "g", desc="Issue GETINSTR") {
peek(mandatoryQueue_in, CacheMsg) {
enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GET_INSTR;
out_msg.RequestorMachId := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
DEBUG_EXPR(address);
DEBUG_EXPR(out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
out_msg.L1CacheStateStr := getStateStr(address);
out_msg.Prefetch := in_msg.Prefetch;
out_msg.AccessMode := in_msg.AccessMode;
}
}
}
action(d_issuePUTX, "d", desc="Issue PUTX") {
enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:PUTX;
out_msg.RequestorMachId := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
DEBUG_EXPR(address);
DEBUG_EXPR(out_msg.Destination);
DEBUG_EXPR(out_msg.DataBlk);
out_msg.MessageSize := MessageSizeType:Data;
out_msg.L1CacheStateStr := getStateStr(address);
}
}
action(q_issuePUTS, "q", desc="Issue PUTS") {
enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:PUTS;
out_msg.RequestorMachId := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
DEBUG_EXPR(address);
DEBUG_EXPR(out_msg.Destination);
out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
out_msg.MessageSize := MessageSizeType:Data;
out_msg.L1CacheStateStr := getStateStr(address);
}
}
// L1 responding to a L2 request with data
action(e_dataFromL1CacheToL2Cache, "e", desc="Send data from L1 cache to L2 Cache") {
enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.SenderMachId := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
DEBUG_EXPR(address);
DEBUG_EXPR(out_msg.Destination);
DEBUG_EXPR(out_msg.DataBlk);
out_msg.MessageSize := MessageSizeType:Data;
}
}
action(f_dataFromTBEToL2Cache, "f", desc="Send data from L1_TBE to L2 Cache") {
peek(requestIntraChipL1Network_in, RequestMsg) {
enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.SenderMachId := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
out_msg.DataBlk := L1_TBEs[in_msg.Address].DataBlk;
DEBUG_EXPR(address);
DEBUG_EXPR(out_msg.Destination);
DEBUG_EXPR(out_msg.DataBlk);
out_msg.MessageSize := MessageSizeType:Data;
}
}
}
// L1 responding to a L2 request with an invadiation ack
action(t_sendInvAckToL2Cache, "t", desc="Send Invadiation ack to L2 Cache") {
enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:INV_ACK;
out_msg.SenderMachId := machineID;
out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
DEBUG_EXPR(address);
DEBUG_EXPR(out_msg.Destination);
out_msg.MessageSize := MessageSizeType:Control;
}
}
action(h_load_hit, "h", desc="If not prefetch, notify sequencer the load completed.") {
DEBUG_EXPR(getL1CacheEntry(address).DataBlk);
sequencer.readCallback(address, getL1CacheEntry(address).DataBlk);
}
action(hh_store_hit, "\h", desc="If not prefetch, notify sequencer that store completed.") {
DEBUG_EXPR(getL1CacheEntry(address).DataBlk);
sequencer.writeCallback(address, getL1CacheEntry(address).DataBlk);
}
action(i_allocateTBE, "i", desc="Allocate TBE (isPrefetch=0, number of invalidates=0)") {
check_allocate(L1_TBEs);
L1_TBEs.allocate(address);
L1_TBEs[address].isPrefetch := false;
}
action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
mandatoryQueue_in.dequeue();
}
action(l_popRequestQueue, "l", desc="Pop incoming request queue and profile the delay within this virtual network") {
profileMsgDelay(2, requestIntraChipL1Network_in.dequeue_getDelayCycles());
}
action(o_popIncomingResponseQueue, "o", desc="Pop Incoming Response queue and profile the delay within this virtual network") {
profileMsgDelay(3, responseIntraChipL1Network_in.dequeue_getDelayCycles());
}
action(s_deallocateTBE, "s", desc="Deallocate TBE") {
L1_TBEs.deallocate(address);
}
action(u_writeDataToL1Cache, "u", desc="Write data to cache") {
peek(responseIntraChipL1Network_in, ResponseMsg) {
getL1CacheEntry(address).DataBlk := in_msg.DataBlk;
}
}
action(x_copyDataFromL1CacheToTBE, "x", desc="Copy data from cache to TBE") {
L1_TBEs[address].DataBlk := getL1CacheEntry(address).DataBlk;
}
action(z_stall, "z", desc="Stall") {
}
action(ff_deallocateL1CacheBlock, "\f", desc="Deallocate L1 cache block. Sets the cache to not present, allowing a replacement in parallel with a fetch.") {
if (L1DcacheMemory.isTagPresent(address)) {
L1DcacheMemory.deallocate(address);
} else {
L1IcacheMemory.deallocate(address);
}
}
action(oo_allocateL1DCacheBlock, "\o", desc="Set L1 D-cache tag equal to tag of block B.") {
if (L1DcacheMemory.isTagPresent(address) == false) {
L1DcacheMemory.allocate(address);
}
}
action(pp_allocateL1ICacheBlock, "\p", desc="Set L1 I-cache tag equal to tag of block B.") {
if (L1IcacheMemory.isTagPresent(address) == false) {
L1IcacheMemory.allocate(address);
}
}
//*****************************************************
// TRANSITIONS
//*****************************************************
// Transitions for Load/Store/Replacement/WriteBack from transient states
transition({L1_IS, L1_IM, L1_ISI, L1_IMI, L1_IMS, L1_IMSI, L1_SI, L1_MI}, {Load, Ifetch, Store, L1_Replacement, L1_WriteBack}) {
z_stall;
}
// Transitions from Idle
transition({NP,L1_I}, {L1_Replacement, L1_WriteBack}) {
ff_deallocateL1CacheBlock;
}
transition({NP,L1_I}, Load, L1_IS) {
oo_allocateL1DCacheBlock;
i_allocateTBE;
a_issueGETS;
k_popMandatoryQueue;
}
transition({NP,L1_I}, Ifetch, L1_IS) {
pp_allocateL1ICacheBlock;
i_allocateTBE;
f_issueGETINSTR;
k_popMandatoryQueue;
}
transition({NP,L1_I}, Store, L1_IM) {
oo_allocateL1DCacheBlock;
i_allocateTBE;
b_issueGETX;
k_popMandatoryQueue;
}
// Transitions from Shared
transition({L1_S}, {Load,Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(L1_S, Store, L1_IM) {
i_allocateTBE;
c_issueUPGRADE;
k_popMandatoryQueue;
}
transition(L1_S, {L1_Replacement,L1_WriteBack}, L1_SI) {
i_allocateTBE;
q_issuePUTS;
x_copyDataFromL1CacheToTBE;
ff_deallocateL1CacheBlock;
}
transition(L1_S, L1_INV_S, L1_I) {
t_sendInvAckToL2Cache;
l_popRequestQueue;
}
// Transitions from Modified
transition(L1_M, {Load, Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(L1_M, Store) {
hh_store_hit;
k_popMandatoryQueue;
}
transition(L1_M, {L1_Replacement, L1_WriteBack}, L1_MI) {
i_allocateTBE;
d_issuePUTX;
x_copyDataFromL1CacheToTBE;
ff_deallocateL1CacheBlock;
}
transition(L1_M, L1_INV, L1_I) {
e_dataFromL1CacheToL2Cache;
l_popRequestQueue;
}
transition(L1_M, L1_DownGrade, L1_S) {
e_dataFromL1CacheToL2Cache;
l_popRequestQueue;
}
// Transitions from L1_IS
transition(L1_IS, L1_INV_S, L1_ISI) {
t_sendInvAckToL2Cache;
l_popRequestQueue;
}
transition(L1_IS, L1_Data, L1_S) {
u_writeDataToL1Cache;
h_load_hit;
s_deallocateTBE;
o_popIncomingResponseQueue;
}
transition(L1_IS, L1_Data_I, L1_I) {
u_writeDataToL1Cache;
h_load_hit;
s_deallocateTBE;
o_popIncomingResponseQueue;
}
// Transitions from L1_ISI
transition(L1_ISI, L1_Data, L1_I) {
u_writeDataToL1Cache;
h_load_hit;
s_deallocateTBE;
o_popIncomingResponseQueue;
}
// Transitions from L1_IM
transition(L1_IM, L1_INV, L1_IMI) { // we don't have to respond immediately because we know the data is coming
l_popRequestQueue;
}
transition(L1_IM, L1_INV_S) {
t_sendInvAckToL2Cache;
l_popRequestQueue;
}
transition(L1_IM, L1_DownGrade, L1_IMS) {
l_popRequestQueue;
}
transition(L1_IM, L1_Data, L1_M) {
u_writeDataToL1Cache;
hh_store_hit;
s_deallocateTBE;
o_popIncomingResponseQueue;
}
transition(L1_IM, L1_Data_S, L1_S) {
u_writeDataToL1Cache;
hh_store_hit;
s_deallocateTBE;
e_dataFromL1CacheToL2Cache;
o_popIncomingResponseQueue;
}
transition(L1_IM, L1_Data_I, L1_I) {
u_writeDataToL1Cache;
hh_store_hit;
s_deallocateTBE;
e_dataFromL1CacheToL2Cache;
o_popIncomingResponseQueue;
}
// Transitions from L1_IMI - data should arrive and no request are possilbe
transition(L1_IMI, L1_Data, L1_I) {
u_writeDataToL1Cache;
hh_store_hit;
s_deallocateTBE;
e_dataFromL1CacheToL2Cache;
o_popIncomingResponseQueue;
}
// Transitions from L1_IMS
transition(L1_IMS, L1_Data, L1_S) {
u_writeDataToL1Cache;
hh_store_hit;
s_deallocateTBE;
e_dataFromL1CacheToL2Cache;
o_popIncomingResponseQueue;
}
transition(L1_IMS, L1_INV_S, L1_IMSI) {
l_popRequestQueue;
}
// Transitions from L1_IMSI
transition(L1_IMSI, L1_Data, L1_I) {
u_writeDataToL1Cache;
hh_store_hit;
s_deallocateTBE;
e_dataFromL1CacheToL2Cache;
o_popIncomingResponseQueue;
}
// Transitions from L1_SI
transition(L1_SI, L1_INV_S) {
t_sendInvAckToL2Cache;
l_popRequestQueue;
}
transition(L1_SI, L1_PutAck, L1_I) {
s_deallocateTBE;
o_popIncomingResponseQueue;
}
// Transitions from L1_MI
transition(L1_MI, L1_INV) {
f_dataFromTBEToL2Cache;
l_popRequestQueue;
}
transition(L1_MI, L1_DownGrade, L1_SI) {
f_dataFromTBEToL2Cache;
l_popRequestQueue;
}
transition(L1_MI, L1_PutAck, L1_I) {
s_deallocateTBE;
o_popIncomingResponseQueue;
}
}