gem5/src/mem/protocol/MI_example-dir.sm
Derek Hower 4b7ea4cb51 ruby: fixed dma sequencer bug
The DMASequencer was still using a parameter from the old RubyConfig,
causing an offset error when the requested data wasn't block aligned.
This changeset also includes a fix to MI_example for a similar bug.
2009-07-18 17:03:51 -05:00

606 lines
19 KiB
Plaintext

machine(Directory, "Directory protocol") : LATENCY_TO_MEM_CTRL_LATENCY LATENCY_DIRECTORY_LATENCY LATENCY_MEMORY_LATENCY {
MessageBuffer forwardFromDir, network="To", virtual_network="2", ordered="false";
MessageBuffer responseFromDir, network="To", virtual_network="1", ordered="false";
MessageBuffer dmaRequestFromDir, network="To", virtual_network="4", ordered="true";
MessageBuffer requestToDir, network="From", virtual_network="0", ordered="true";
MessageBuffer dmaRequestToDir, network="From", virtual_network="5", ordered="true";
// STATES
enumeration(State, desc="Directory states", default="Directory_State_I") {
// Base states
I, desc="Invalid";
M, desc="Modified";
M_DRD, desc="Blocked on an invalidation for a DMA read";
M_DWR, desc="Blocked on an invalidation for a DMA write";
M_DWRI, desc="Intermediate state M_DWR-->I";
IM, desc="Intermediate state I-->M";
MI, desc="Intermediate state M-->I";
ID, desc="Intermediate state for DMA_READ when in I";
ID_W, desc="Intermediate state for DMA_WRITE when in I";
}
// Events
enumeration(Event, desc="Directory events") {
// processor requests
GETX, desc="A GETX arrives";
GETS, desc="A GETS arrives";
PUTX, desc="A PUTX arrives";
PUTX_NotOwner, desc="A PUTX arrives";
// DMA requests
DMA_READ, desc="A DMA Read memory request";
DMA_WRITE, desc="A DMA Write memory request";
// Memory Controller
Memory_Data, desc="Fetched data from memory arrives";
Memory_Ack, desc="Writeback Ack from memory arrives";
}
// TYPES
// DirectoryEntry
structure(Entry, desc="...") {
State DirectoryState, desc="Directory state";
DataBlock DataBlk, desc="data for the block";
NetDest Sharers, desc="Sharers for this block";
NetDest Owner, desc="Owner of this block";
}
external_type(DirectoryMemory) {
Entry lookup(Address);
bool isPresent(Address);
void invalidateBlock(Address);
}
external_type(MemoryControl, inport="yes", outport="yes") {
}
// TBE entries for DMA requests
structure(TBE, desc="TBE entries for outstanding DMA requests") {
State TBEState, desc="Transient State";
DataBlock DataBlk, desc="Data to be written (DMA write only)";
int Offset, desc="...";
int Len, desc="...";
}
external_type(TBETable) {
TBE lookup(Address);
void allocate(Address);
void deallocate(Address);
bool isPresent(Address);
}
// ** OBJECTS **
DirectoryMemory directory, factory='RubySystem::getDirectory(m_cfg["directory_name"])';
MemoryControl memBuffer, factory='RubySystem::getMemoryControl(m_cfg["memory_controller_name"])';
TBETable TBEs, template_hack="<Directory_TBE>";
State getState(Address addr) {
if (TBEs.isPresent(addr)) {
return TBEs[addr].TBEState;
} else if (directory.isPresent(addr)) {
return directory[addr].DirectoryState;
} else {
return State:I;
}
}
void setState(Address addr, State state) {
if (TBEs.isPresent(addr)) {
TBEs[addr].TBEState := state;
}
if (directory.isPresent(addr)) {
if (state == State:I) {
assert(directory[addr].Owner.count() == 0);
assert(directory[addr].Sharers.count() == 0);
} else if (state == State:M) {
assert(directory[addr].Owner.count() == 1);
assert(directory[addr].Sharers.count() == 0);
}
directory[addr].DirectoryState := state;
}
}
// ** OUT_PORTS **
out_port(forwardNetwork_out, RequestMsg, forwardFromDir);
out_port(responseNetwork_out, ResponseMsg, responseFromDir);
out_port(requestQueue_out, ResponseMsg, requestToDir); // For recycling requests
out_port(dmaResponseNetwork_out, DMAResponseMsg, dmaRequestFromDir);
//added by SS
out_port(memQueue_out, MemoryMsg, memBuffer);
// ** IN_PORTS **
in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir) {
if (dmaRequestQueue_in.isReady()) {
peek(dmaRequestQueue_in, DMARequestMsg) {
if (in_msg.Type == DMARequestType:READ) {
trigger(Event:DMA_READ, in_msg.LineAddress);
} else if (in_msg.Type == DMARequestType:WRITE) {
trigger(Event:DMA_WRITE, in_msg.LineAddress);
} else {
error("Invalid message");
}
}
}
}
in_port(requestQueue_in, RequestMsg, requestToDir) {
if (requestQueue_in.isReady()) {
peek(requestQueue_in, RequestMsg) {
if (in_msg.Type == CoherenceRequestType:GETS) {
trigger(Event:GETS, in_msg.Address);
} else if (in_msg.Type == CoherenceRequestType:GETX) {
trigger(Event:GETX, in_msg.Address);
} else if (in_msg.Type == CoherenceRequestType:PUTX) {
if (directory[in_msg.Address].Owner.isElement(in_msg.Requestor)) {
trigger(Event:PUTX, in_msg.Address);
} else {
trigger(Event:PUTX_NotOwner, in_msg.Address);
}
} else {
error("Invalid message");
}
}
}
}
//added by SS
// off-chip memory request/response is done
in_port(memQueue_in, MemoryMsg, memBuffer) {
if (memQueue_in.isReady()) {
peek(memQueue_in, MemoryMsg) {
if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
trigger(Event:Memory_Data, in_msg.Address);
} else if (in_msg.Type == MemoryRequestType:MEMORY_WB) {
trigger(Event:Memory_Ack, in_msg.Address);
} else {
DEBUG_EXPR(in_msg.Type);
error("Invalid message");
}
}
}
}
// Actions
action(a_sendWriteBackAck, "a", desc="Send writeback ack to requestor") {
peek(requestQueue_in, RequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, latency="DIRECTORY_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:WB_ACK;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(l_sendWriteBackAck, "la", desc="Send writeback ack to requestor") {
peek(memQueue_in, MemoryMsg) {
enqueue(forwardNetwork_out, RequestMsg, latency="TO_MEM_CTRL_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:WB_ACK;
out_msg.Requestor := in_msg.OriginalRequestorMachId;
out_msg.Destination.add(in_msg.OriginalRequestorMachId);
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(b_sendWriteBackNack, "b", desc="Send writeback nack to requestor") {
peek(requestQueue_in, RequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, latency="DIRECTORY_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:WB_NACK;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(c_clearOwner, "c", desc="Clear the owner field") {
directory[address].Owner.clear();
}
// action(d_sendData, "d", desc="Send data to requestor") {
// peek(requestQueue_in, RequestMsg) {
// enqueue(responseNetwork_out, ResponseMsg, latency="MEMORY_LATENCY") {
// out_msg.Address := address;
//
// if (in_msg.Type == CoherenceRequestType:GETS && directory[address].Sharers.count() == 0) {
// // out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE_CLEAN;
// out_msg.Type := CoherenceResponseType:DATA;
// } else {
// out_msg.Type := CoherenceResponseType:DATA;
// }
//
// out_msg.Sender := machineID;
// out_msg.Destination.add(in_msg.Requestor);
// out_msg.DataBlk := directory[in_msg.Address].DataBlk;
// out_msg.MessageSize := MessageSizeType:Response_Data;
// }
// }
// }
action(d_sendData, "d", desc="Send data to requestor") {
peek(memQueue_in, MemoryMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency="TO_MEM_CTRL_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.OriginalRequestorMachId);
out_msg.DataBlk := in_msg.DataBlk;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
// action(dr_sendDMAData, "dr", desc="Send Data to DMA controller from directory") {
// peek(dmaRequestQueue_in, DMARequestMsg) {
// enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="MEMORY_LATENCY") {
// out_msg.PhysicalAddress := address;
// out_msg.Type := DMAResponseType:DATA;
// out_msg.DataBlk := directory[in_msg.PhysicalAddress].DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be
// out_msg.Destination.add(map_Address_to_DMA(address));
// out_msg.MessageSize := MessageSizeType:Response_Data;
// }
// }
// }
action(dr_sendDMAData, "dr", desc="Send Data to DMA controller from directory") {
peek(memQueue_in, MemoryMsg) {
enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="MEMORY_LATENCY") {
out_msg.PhysicalAddress := address;
out_msg.LineAddress := address;
out_msg.Type := DMAResponseType:DATA;
out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be
out_msg.Destination.add(map_Address_to_DMA(address));
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(drp_sendDMAData, "drp", desc="Send Data to DMA controller from incoming PUTX") {
peek(requestQueue_in, RequestMsg) {
enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="MEMORY_LATENCY") {
out_msg.PhysicalAddress := address;
out_msg.LineAddress := address;
out_msg.Type := DMAResponseType:DATA;
out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be
out_msg.Destination.add(map_Address_to_DMA(address));
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(da_sendDMAAck, "da", desc="Send Ack to DMA controller") {
enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="MEMORY_LATENCY") {
out_msg.PhysicalAddress := address;
out_msg.LineAddress := address;
out_msg.Type := DMAResponseType:ACK;
out_msg.Destination.add(map_Address_to_DMA(address));
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
action(d_deallocateDirectory, "\d", desc="Deallocate Directory Entry") {
directory.invalidateBlock(address);
}
action(e_ownerIsRequestor, "e", desc="The owner is now the requestor") {
peek(requestQueue_in, RequestMsg) {
directory[address].Owner.clear();
directory[address].Owner.add(in_msg.Requestor);
}
}
action(f_forwardRequest, "f", desc="Forward request to owner") {
peek(requestQueue_in, RequestMsg) {
APPEND_TRANSITION_COMMENT("Own: ");
APPEND_TRANSITION_COMMENT(directory[in_msg.Address].Owner);
APPEND_TRANSITION_COMMENT("Req: ");
APPEND_TRANSITION_COMMENT(in_msg.Requestor);
enqueue(forwardNetwork_out, RequestMsg, latency="DIRECTORY_LATENCY") {
out_msg.Address := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination := directory[in_msg.Address].Owner;
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(inv_sendCacheInvalidate, "inv", desc="Invalidate a cache block") {
peek(dmaRequestQueue_in, DMARequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, latency="DIRECTORY_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:INV;
out_msg.Requestor := machineID;
out_msg.Destination := directory[in_msg.PhysicalAddress].Owner;
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") {
requestQueue_in.dequeue();
}
action(p_popIncomingDMARequestQueue, "p", desc="Pop incoming DMA queue") {
dmaRequestQueue_in.dequeue();
}
action(l_writeDataToMemory, "l", desc="Write PUTX data to memory") {
peek(requestQueue_in, RequestMsg) {
// assert(in_msg.Dirty);
// assert(in_msg.MessageSize == MessageSizeType:Writeback_Data);
directory[in_msg.Address].DataBlk := in_msg.DataBlk;
DEBUG_EXPR(in_msg.Address);
DEBUG_EXPR(in_msg.DataBlk);
}
}
action(dwt_writeDMADataFromTBE, "dwt", desc="DMA Write data to memory from TBE") {
directory[address].DataBlk.copyPartial(TBEs[address].DataBlk, TBEs[address].Offset, TBEs[address].Len);
}
action(v_allocateTBE, "v", desc="Allocate TBE") {
peek(dmaRequestQueue_in, DMARequestMsg) {
TBEs.allocate(address);
TBEs[address].DataBlk := in_msg.DataBlk;
TBEs[address].Offset := in_msg.Offset;
TBEs[address].Len := in_msg.Len;
}
}
action(v_allocateTBEFromRequestNet, "\v", desc="Allocate TBE") {
peek(requestQueue_in, RequestMsg) {
TBEs.allocate(address);
TBEs[address].DataBlk := in_msg.DataBlk;
}
}
action(w_deallocateTBE, "w", desc="Deallocate TBE") {
TBEs.deallocate(address);
}
action(z_recycleRequestQueue, "z", desc="recycle request queue") {
requestQueue_in.recycle();
}
action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") {
peek(requestQueue_in, RequestMsg) {
enqueue(memQueue_out, MemoryMsg, latency="TO_MEM_CTRL_LATENCY") {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_READ;
out_msg.Sender := machineID;
out_msg.OriginalRequestorMachId := in_msg.Requestor;
out_msg.MessageSize := in_msg.MessageSize;
out_msg.DataBlk := directory[in_msg.Address].DataBlk;
DEBUG_EXPR(out_msg);
}
}
}
action(qf_queueMemoryFetchRequestDMA, "qfd", desc="Queue off-chip fetch request") {
peek(dmaRequestQueue_in, DMARequestMsg) {
enqueue(memQueue_out, MemoryMsg, latency="TO_MEM_CTRL_LATENCY") {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_READ;
out_msg.Sender := machineID;
//out_msg.OriginalRequestorMachId := machineID;
out_msg.MessageSize := in_msg.MessageSize;
out_msg.DataBlk := directory[address].DataBlk;
DEBUG_EXPR(out_msg);
}
}
}
// action(qw_queueMemoryWBRequest, "qw", desc="Queue off-chip writeback request") {
// peek(dmaRequestQueue_in, DMARequestMsg) {
// enqueue(memQueue_out, MemoryMsg, latency="TO_MEM_CTRL_LATENCY") {
// out_msg.Address := address;
// out_msg.Type := MemoryRequestType:MEMORY_WB;
// out_msg.OriginalRequestorMachId := machineID;
// out_msg.DataBlk := in_msg.DataBlk;
// out_msg.MessageSize := in_msg.MessageSize;
// DEBUG_EXPR(out_msg);
// }
// }
// }
action(qw_queueMemoryWBRequest_partial, "qwp", desc="Queue off-chip writeback request") {
peek(dmaRequestQueue_in, DMARequestMsg) {
enqueue(memQueue_out, MemoryMsg, latency="TO_MEM_CTRL_LATENCY") {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_WB;
//out_msg.OriginalRequestorMachId := machineID;
//out_msg.DataBlk := in_msg.DataBlk;
out_msg.DataBlk.copyPartial(in_msg.DataBlk, in_msg.Offset, in_msg.Len);
out_msg.MessageSize := in_msg.MessageSize;
//out_msg.Prefetch := in_msg.Prefetch;
DEBUG_EXPR(out_msg);
}
}
}
action(qw_queueMemoryWBRequest_partialTBE, "qwt", desc="Queue off-chip writeback request") {
peek(requestQueue_in, RequestMsg) {
enqueue(memQueue_out, MemoryMsg, latency="TO_MEM_CTRL_LATENCY") {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_WB;
out_msg.OriginalRequestorMachId := in_msg.Requestor;
//out_msg.DataBlk := in_msg.DataBlk;
out_msg.DataBlk.copyPartial(TBEs[address].DataBlk, TBEs[address].Offset, TBEs[address].Len);
out_msg.MessageSize := in_msg.MessageSize;
//out_msg.Prefetch := in_msg.Prefetch;
DEBUG_EXPR(out_msg);
}
}
}
action(l_queueMemoryWBRequest, "lq", desc="Write PUTX data to memory") {
peek(requestQueue_in, RequestMsg) {
enqueue(memQueue_out, MemoryMsg, latency="TO_MEM_CTRL_LATENCY") {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_WB;
out_msg.OriginalRequestorMachId := in_msg.Requestor;
out_msg.DataBlk := in_msg.DataBlk;
out_msg.MessageSize := in_msg.MessageSize;
//out_msg.Prefetch := in_msg.Prefetch;
DEBUG_EXPR(out_msg);
}
}
}
action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
memQueue_in.dequeue();
}
action(w_writeDataToMemoryFromTBE, "\w", desc="Write date to directory memory from TBE") {
directory[address].DataBlk := TBEs[address].DataBlk;
}
// TRANSITIONS
transition({M_DRD, M_DWR}, GETX) {
z_recycleRequestQueue;
}
transition({IM, MI, ID, ID_W}, {GETX, GETS, DMA_READ, DMA_WRITE, PUTX, PUTX_NotOwner} ) {
z_recycleRequestQueue;
}
transition(I, GETX, IM) {
//d_sendData;
qf_queueMemoryFetchRequest;
e_ownerIsRequestor;
i_popIncomingRequestQueue;
}
transition(IM, Memory_Data, M) {
d_sendData;
//e_ownerIsRequestor;
l_popMemQueue;
}
transition(I, DMA_READ, ID) {
//dr_sendDMAData;
qf_queueMemoryFetchRequestDMA;
p_popIncomingDMARequestQueue;
}
transition(ID, Memory_Data, I) {
dr_sendDMAData;
//p_popIncomingDMARequestQueue;
l_popMemQueue;
}
transition(I, DMA_WRITE, ID_W) {
v_allocateTBE;
qw_queueMemoryWBRequest_partial;
p_popIncomingDMARequestQueue;
}
transition(ID_W, Memory_Ack, I) {
dwt_writeDMADataFromTBE;
da_sendDMAAck;
w_deallocateTBE;
l_popMemQueue;
}
transition(M, DMA_READ, M_DRD) {
inv_sendCacheInvalidate;
p_popIncomingDMARequestQueue;
}
transition(M_DRD, PUTX, I) {
drp_sendDMAData;
c_clearOwner;
a_sendWriteBackAck;
d_deallocateDirectory;
i_popIncomingRequestQueue;
}
transition(M, DMA_WRITE, M_DWR) {
v_allocateTBE;
inv_sendCacheInvalidate;
p_popIncomingDMARequestQueue;
}
transition(M_DWR, PUTX, M_DWRI) {
qw_queueMemoryWBRequest_partialTBE;
c_clearOwner;
i_popIncomingRequestQueue;
}
transition(M_DWRI, Memory_Ack, I) {
w_writeDataToMemoryFromTBE;
l_sendWriteBackAck;
da_sendDMAAck;
w_deallocateTBE;
d_deallocateDirectory;
l_popMemQueue;
}
transition(M, GETX, M) {
f_forwardRequest;
e_ownerIsRequestor;
i_popIncomingRequestQueue;
}
transition(M, PUTX, MI) {
c_clearOwner;
v_allocateTBEFromRequestNet;
l_queueMemoryWBRequest;
i_popIncomingRequestQueue;
}
transition(MI, Memory_Ack, I) {
w_writeDataToMemoryFromTBE;
l_sendWriteBackAck;
w_deallocateTBE;
d_deallocateDirectory;
l_popMemQueue;
}
transition(M, PUTX_NotOwner, M) {
b_sendWriteBackNack;
i_popIncomingRequestQueue;
}
transition(I, PUTX_NotOwner, I) {
b_sendWriteBackNack;
i_popIncomingRequestQueue;
}
}