gem5/cpu/cpu_exec_context.cc
Kevin Lim 716ceb6c10 Code update for CPU models.
arch/alpha/isa_traits.hh:
    Add in clear functions.
cpu/base.cc:
cpu/base.hh:
    Add in CPU progress event.
cpu/base_dyn_inst.hh:
    Mimic normal registers in terms of writing/reading floats.
cpu/checker/cpu.cc:
cpu/checker/cpu.hh:
cpu/checker/cpu_builder.cc:
cpu/checker/o3_cpu_builder.cc:
    Fix up stuff.
cpu/cpu_exec_context.cc:
cpu/cpu_exec_context.hh:
cpu/o3/cpu.cc:
cpu/o3/cpu.hh:
    Bring up to speed with newmem.
cpu/o3/alpha_cpu_builder.cc:
    Allow for progress intervals.
cpu/o3/tournament_pred.cc:
    Fix up predictor.
cpu/o3/tournament_pred.hh:
cpu/ozone/cpu.hh:
cpu/ozone/cpu_impl.hh:
cpu/simple/cpu.cc:
    Fixes.
cpu/ozone/cpu_builder.cc:
    Allow progress interval.
cpu/ozone/front_end_impl.hh:
    Comment out this message.
cpu/ozone/lw_back_end_impl.hh:
    Remove this.
python/m5/objects/BaseCPU.py:
    Add progress interval.
python/m5/objects/Root.py:
    Allow for stat reset.
sim/serialize.cc:
sim/stat_control.cc:
    Add in stats reset.

--HG--
extra : convert_revision : fdb5ac5542099173cc30c40ea93372a065534b5e
2006-08-11 17:42:59 -04:00

358 lines
9.3 KiB
C++

/*
* Copyright (c) 2001-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string>
#include "cpu/base.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/exec_context.hh"
#if FULL_SYSTEM
#include "base/callback.hh"
#include "base/cprintf.hh"
#include "base/output.hh"
#include "base/trace.hh"
#include "cpu/profile.hh"
#include "cpu/quiesce_event.hh"
#include "kern/kernel_stats.hh"
#include "sim/serialize.hh"
#include "sim/sim_exit.hh"
#include "sim/system.hh"
#include "arch/stacktrace.hh"
#else
#include "sim/process.hh"
#endif
using namespace std;
// constructor
#if FULL_SYSTEM
CPUExecContext::CPUExecContext(BaseCPU *_cpu, int _thread_num, System *_sys,
AlphaITB *_itb, AlphaDTB *_dtb,
FunctionalMemory *_mem,
bool use_kernel_stats)
: _status(ExecContext::Unallocated), cpu(_cpu), thread_num(_thread_num),
cpu_id(-1), lastActivate(0), lastSuspend(0), mem(_mem), itb(_itb),
dtb(_dtb), system(_sys), memctrl(_sys->memctrl), physmem(_sys->physmem),
profile(NULL), func_exe_inst(0), storeCondFailures(0)
{
proxy = new ProxyExecContext<CPUExecContext>(this);
quiesceEvent = new EndQuiesceEvent(proxy);
memset(&regs, 0, sizeof(RegFile));
if (cpu->params->profile) {
profile = new FunctionProfile(system->kernelSymtab);
Callback *cb =
new MakeCallback<CPUExecContext,
&CPUExecContext::dumpFuncProfile>(this);
registerExitCallback(cb);
}
// let's fill with a dummy node for now so we don't get a segfault
// on the first cycle when there's no node available.
static ProfileNode dummyNode;
profileNode = &dummyNode;
profilePC = 3;
if (use_kernel_stats) {
kernelStats = new Kernel::Statistics(system);
} else {
kernelStats = NULL;
}
}
#else
CPUExecContext::CPUExecContext(BaseCPU *_cpu, int _thread_num,
Process *_process, int _asid)
: _status(ExecContext::Unallocated),
cpu(_cpu), thread_num(_thread_num), cpu_id(-1), lastActivate(0),
lastSuspend(0), process(_process), mem(process->getMemory()), asid(_asid),
func_exe_inst(0), storeCondFailures(0)
{
memset(&regs, 0, sizeof(RegFile));
proxy = new ProxyExecContext<CPUExecContext>(this);
}
CPUExecContext::CPUExecContext(BaseCPU *_cpu, int _thread_num,
FunctionalMemory *_mem, int _asid)
: cpu(_cpu), thread_num(_thread_num), process(0), mem(_mem), asid(_asid),
func_exe_inst(0), storeCondFailures(0)
{
memset(&regs, 0, sizeof(RegFile));
proxy = new ProxyExecContext<CPUExecContext>(this);
}
CPUExecContext::CPUExecContext(RegFile *regFile)
: cpu(NULL), thread_num(-1), process(NULL), mem(NULL), asid(-1),
func_exe_inst(0), storeCondFailures(0)
{
regs = *regFile;
proxy = new ProxyExecContext<CPUExecContext>(this);
}
#endif
CPUExecContext::CPUExecContext()
#if !FULL_SYSTEM
: cpu(NULL), thread_num(-1), process(NULL), mem(NULL), asid(-1),
func_exe_inst(0), storeCondFailures(0)
#else
: cpu(NULL), thread_num(-1), cpu_id(-1), lastActivate(0), lastSuspend(0),
mem(NULL), itb(NULL), dtb(NULL), system(NULL), memctrl(NULL),
physmem(NULL), profile(NULL), func_exe_inst(0), storeCondFailures(0)
#endif
{
regs.clear();
proxy = new ProxyExecContext<CPUExecContext>(this);
}
CPUExecContext::~CPUExecContext()
{
delete proxy;
}
#if FULL_SYSTEM
void
CPUExecContext::dumpFuncProfile()
{
std::ostream *os = simout.create(csprintf("profile.%s.dat", cpu->name()));
profile->dump(proxy, *os);
}
void
CPUExecContext::profileClear()
{
if (profile)
profile->clear();
}
void
CPUExecContext::profileSample()
{
if (profile)
profile->sample(profileNode, profilePC);
}
#endif
void
CPUExecContext::takeOverFrom(ExecContext *oldContext)
{
// some things should already be set up
assert(mem == oldContext->getMemPtr());
#if FULL_SYSTEM
assert(system == oldContext->getSystemPtr());
#else
assert(process == oldContext->getProcessPtr());
#endif
copyState(oldContext);
#if FULL_SYSTEM
EndQuiesceEvent *quiesce = oldContext->getQuiesceEvent();
if (quiesce) {
// Point the quiesce event's XC at this XC so that it wakes up
// the proper CPU.
quiesce->xc = proxy;
}
if (quiesceEvent) {
quiesceEvent->xc = proxy;
}
#endif
storeCondFailures = 0;
oldContext->setStatus(ExecContext::Unallocated);
}
void
CPUExecContext::copyXC(ExecContext *context)
{
copyState(context);
#if FULL_SYSTEM
EndQuiesceEvent *quiesce = context->getQuiesceEvent();
if (quiesce) {
quiesceEvent = quiesce;
}
Kernel::Statistics *stats = context->getKernelStats();
if (stats) {
kernelStats = stats;
}
#endif
}
void
CPUExecContext::copyState(ExecContext *oldContext)
{
// copy over functional state
_status = oldContext->status();
copyArchRegs(oldContext);
cpu_id = oldContext->readCpuId();
#if !FULL_SYSTEM
func_exe_inst = oldContext->readFuncExeInst();
#endif
inst = oldContext->getInst();
}
void
CPUExecContext::serialize(ostream &os)
{
SERIALIZE_ENUM(_status);
regs.serialize(os);
// thread_num and cpu_id are deterministic from the config
SERIALIZE_SCALAR(func_exe_inst);
SERIALIZE_SCALAR(inst);
#if FULL_SYSTEM
Tick quiesceEndTick = 0;
if (quiesceEvent->scheduled())
quiesceEndTick = quiesceEvent->when();
SERIALIZE_SCALAR(quiesceEndTick);
if (kernelStats)
kernelStats->serialize(os);
#endif
}
void
CPUExecContext::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_ENUM(_status);
regs.unserialize(cp, section);
// thread_num and cpu_id are deterministic from the config
UNSERIALIZE_SCALAR(func_exe_inst);
UNSERIALIZE_SCALAR(inst);
#if FULL_SYSTEM
Tick quiesceEndTick;
UNSERIALIZE_SCALAR(quiesceEndTick);
if (quiesceEndTick)
quiesceEvent->schedule(quiesceEndTick);
if (kernelStats)
kernelStats->unserialize(cp, section);
#endif
}
void
CPUExecContext::activate(int delay)
{
if (status() == ExecContext::Active)
return;
lastActivate = curTick;
if (status() == ExecContext::Unallocated) {
cpu->activateWhenReady(thread_num);
return;
}
_status = ExecContext::Active;
// status() == Suspended
cpu->activateContext(thread_num, delay);
}
void
CPUExecContext::suspend()
{
if (status() == ExecContext::Suspended)
return;
lastActivate = curTick;
lastSuspend = curTick;
/*
#if FULL_SYSTEM
// Don't change the status from active if there are pending interrupts
if (cpu->check_interrupts()) {
assert(status() == ExecContext::Active);
return;
}
#endif
*/
_status = ExecContext::Suspended;
cpu->suspendContext(thread_num);
}
void
CPUExecContext::deallocate()
{
if (status() == ExecContext::Unallocated)
return;
_status = ExecContext::Unallocated;
cpu->deallocateContext(thread_num);
}
void
CPUExecContext::halt()
{
if (status() == ExecContext::Halted)
return;
_status = ExecContext::Halted;
cpu->haltContext(thread_num);
}
void
CPUExecContext::regStats(const string &name)
{
#if FULL_SYSTEM
if (kernelStats)
kernelStats->regStats(name + ".kern");
#endif
}
void
CPUExecContext::copyArchRegs(ExecContext *xc)
{
TheISA::copyRegs(xc, proxy);
/*
// First loop through the integer registers.
for (int i = 0; i < AlphaISA::NumIntRegs; ++i) {
setIntReg(i, xc->readIntReg(i));
}
// Then loop through the floating point registers.
for (int i = 0; i < AlphaISA::NumFloatRegs; ++i) {
setFloatRegDouble(i, xc->readFloatRegDouble(i));
setFloatRegInt(i, xc->readFloatRegInt(i));
}
// Copy misc. registers
TheISA::copyMiscRegs(xc, proxy);
// Lastly copy PC/NPC
setPC(xc->readPC());
setNextPC(xc->readNextPC());
*/
}