gem5/cpu/simple_cpu/simple_cpu.cc
Erik Hallnor 2c7a0b87f5 simple_cpu.cc:
Add data to static memReq and make everything use it.
Add init of numLoads.

cpu/simple_cpu/simple_cpu.cc:
    Add data to static memReq and make everything use it.
    Add init of numLoads.

--HG--
extra : convert_revision : 47d98aae643c64dff4e5cf1dc770a36434122579
2003-10-20 00:46:02 -04:00

770 lines
20 KiB
C++

/*
* Copyright (c) 2003 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <iostream>
#include <iomanip>
#include <list>
#include <sstream>
#include <string>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "sim/host.hh"
#include "base/cprintf.hh"
#include "base/misc.hh"
#include "cpu/full_cpu/smt.hh"
#include "sim/annotation.hh"
#include "cpu/exec_context.hh"
#include "cpu/base_cpu.hh"
#include "sim/debug.hh"
#include "cpu/simple_cpu/simple_cpu.hh"
#include "base/inifile.hh"
#include "mem/mem_interface.hh"
#include "mem/base_mem.hh"
#include "cpu/static_inst.hh"
#ifdef FULL_SYSTEM
#include "mem/functional_mem/memory_control.hh"
#include "mem/functional_mem/physical_memory.hh"
#include "targetarch/alpha_memory.hh"
#include "sim/system.hh"
#else // !FULL_SYSTEM
#include "mem/functional_mem/functional_memory.hh"
#include "sim/prog.hh"
#include "eio/eio.hh"
#endif // FULL_SYSTEM
#include "cpu/exetrace.hh"
#include "base/trace.hh"
#include "sim/sim_events.hh"
#include "base/pollevent.hh"
#include "sim/sim_object.hh"
#include "sim/sim_stats.hh"
#include "base/range.hh"
#include "base/loader/symtab.hh"
#ifdef FULL_SYSTEM
#include "targetarch/vtophys.hh"
#include "dev/pciareg.h"
#include "base/remote_gdb.hh"
#include "dev/alpha_access.h"
#endif
using namespace std;
SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
: Event(&mainEventQueue),
cpu(_cpu)
{
}
void SimpleCPU::CacheCompletionEvent::process()
{
cpu->processCacheCompletion();
}
const char *
SimpleCPU::CacheCompletionEvent::description()
{
return "cache completion event";
}
#ifdef FULL_SYSTEM
SimpleCPU::SimpleCPU(const string &_name,
System *_system,
Counter max_insts_any_thread,
Counter max_insts_all_threads,
Counter max_loads_any_thread,
Counter max_loads_all_threads,
AlphaItb *itb, AlphaDtb *dtb,
FunctionalMemory *mem,
MemInterface *icache_interface,
MemInterface *dcache_interface,
int cpu_id, Tick freq)
: BaseCPU(_name, /* number_of_threads */ 1,
max_insts_any_thread, max_insts_all_threads,
max_loads_any_thread, max_loads_all_threads,
_system, cpu_id, freq),
#else
SimpleCPU::SimpleCPU(const string &_name, Process *_process,
Counter max_insts_any_thread,
Counter max_insts_all_threads,
Counter max_loads_any_thread,
Counter max_loads_all_threads,
MemInterface *icache_interface,
MemInterface *dcache_interface)
: BaseCPU(_name, /* number_of_threads */ 1,
max_insts_any_thread, max_insts_all_threads,
max_loads_any_thread, max_loads_all_threads),
#endif
tickEvent(this), xc(NULL), cacheCompletionEvent(this)
{
#ifdef FULL_SYSTEM
xc = new ExecContext(this, 0, system, itb, dtb, mem, cpu_id);
_status = Running;
if (cpu_id != 0) {
xc->setStatus(ExecContext::Unallocated);
//Open a GDB debug session on port (7000 + the cpu_id)
(new GDBListener(new RemoteGDB(system, xc), 7000 + cpu_id))->listen();
AlphaISA::init(system->physmem, &xc->regs);
fault = Reset_Fault;
IntReg *ipr = xc->regs.ipr;
ipr[TheISA::IPR_MCSR] = 0x6;
AlphaISA::swap_palshadow(&xc->regs, true);
xc->regs.pc =
ipr[TheISA::IPR_PAL_BASE] + AlphaISA::fault_addr[fault];
xc->regs.npc = xc->regs.pc + sizeof(MachInst);
_status = Idle;
}
else {
system->init(xc);
// Reset the system
//
AlphaISA::init(system->physmem, &xc->regs);
fault = Reset_Fault;
IntReg *ipr = xc->regs.ipr;
ipr[TheISA::IPR_MCSR] = 0x6;
AlphaISA::swap_palshadow(&xc->regs, true);
xc->regs.pc = ipr[TheISA::IPR_PAL_BASE] + AlphaISA::fault_addr[fault];
xc->regs.npc = xc->regs.pc + sizeof(MachInst);
_status = Running;
tickEvent.schedule(0);
}
#else
xc = new ExecContext(this, /* thread_num */ 0, _process, /* asid */ 0);
fault = No_Fault;
if (xc->status() == ExecContext::Active) {
_status = Running;
tickEvent.schedule(0);
} else
_status = Idle;
#endif // !FULL_SYSTEM
icacheInterface = icache_interface;
dcacheInterface = dcache_interface;
memReq = new MemReq();
memReq->xc = xc;
memReq->asid = 0;
memReq->data = new uint8_t[64];
numInst = 0;
numLoad = 0;
last_idle = 0;
lastIcacheStall = 0;
lastDcacheStall = 0;
contexts.push_back(xc);
}
SimpleCPU::~SimpleCPU()
{
}
void
SimpleCPU::regStats()
{
BaseCPU::regStats();
numInsts
.name(name() + ".num_insts")
.desc("Number of instructions executed")
;
numMemRefs
.name(name() + ".num_refs")
.desc("Number of memory references")
;
idleCycles
.name(name() + ".idle_cycles")
.desc("Number of idle cycles")
;
idleFraction
.name(name() + ".idle_fraction")
.desc("Percentage of idle cycles")
;
icacheStallCycles
.name(name() + ".icache_stall_cycles")
.desc("ICache total stall cycles")
.prereq(icacheStallCycles)
;
dcacheStallCycles
.name(name() + ".dcache_stall_cycles")
.desc("DCache total stall cycles")
.prereq(dcacheStallCycles)
;
idleFraction = idleCycles / simTicks;
numInsts = Statistics::scalar(numInst);
simInsts += numInsts;
}
void
SimpleCPU::serialize()
{
nameOut();
#ifdef FULL_SYSTEM
#if 0
// do we need this anymore?? egh
childOut("itb", xc->itb);
childOut("dtb", xc->dtb);
childOut("physmem", physmem);
#endif
#endif
for (int i = 0; i < NumIntRegs; i++) {
stringstream buf;
ccprintf(buf, "R%02d", i);
paramOut(buf.str(), xc->regs.intRegFile[i]);
}
for (int i = 0; i < NumFloatRegs; i++) {
stringstream buf;
ccprintf(buf, "F%02d", i);
paramOut(buf.str(), xc->regs.floatRegFile.d[i]);
}
// CPUTraitsType::serializeSpecialRegs(getProxy(), xc->regs);
}
void
SimpleCPU::unserialize(IniFile &db, const string &category, ConfigNode *node)
{
string data;
for (int i = 0; i < NumIntRegs; i++) {
stringstream buf;
ccprintf(buf, "R%02d", i);
db.findDefault(category, buf.str(), data);
to_number(data,xc->regs.intRegFile[i]);
}
for (int i = 0; i < NumFloatRegs; i++) {
stringstream buf;
ccprintf(buf, "F%02d", i);
db.findDefault(category, buf.str(), data);
xc->regs.floatRegFile.d[i] = strtod(data.c_str(),NULL);
}
// Read in Special registers
// CPUTraitsType::unserializeSpecialRegs(db,category,node,xc->regs);
}
void
change_thread_state(int thread_number, int activate, int priority)
{
}
// precise architected memory state accessor macros
template <class T>
Fault
SimpleCPU::read(Addr addr, T& data, unsigned flags)
{
memReq->reset(addr, sizeof(T), flags);
// translate to physical address
Fault fault = xc->translateDataReadReq(memReq);
// do functional access
if (fault == No_Fault)
fault = xc->read(memReq, data);
if (traceData) {
traceData->setAddr(addr);
if (fault == No_Fault)
traceData->setData(data);
}
// if we have a cache, do cache access too
if (fault == No_Fault && dcacheInterface) {
memReq->cmd = Read;
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~UNCACHEABLE;
MemAccessResult result = dcacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT && dcacheInterface->doEvents) {
memReq->completionEvent = &cacheCompletionEvent;
setStatus(DcacheMissStall);
}
}
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
SimpleCPU::read(Addr addr, uint64_t& data, unsigned flags);
template
Fault
SimpleCPU::read(Addr addr, uint32_t& data, unsigned flags);
template
Fault
SimpleCPU::read(Addr addr, uint16_t& data, unsigned flags);
template
Fault
SimpleCPU::read(Addr addr, uint8_t& data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
SimpleCPU::read(Addr addr, double& data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
SimpleCPU::read(Addr addr, float& data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
SimpleCPU::read(Addr addr, int32_t& data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
if (traceData) {
traceData->setAddr(addr);
traceData->setData(data);
}
memReq->reset(addr, sizeof(T), flags);
// translate to physical address
Fault fault = xc->translateDataWriteReq(memReq);
// do functional access
if (fault == No_Fault)
fault = xc->write(memReq, data);
if (fault == No_Fault && dcacheInterface) {
memReq->cmd = Write;
memcpy(memReq->data,(uint8_t *)&data,memReq->size);
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~UNCACHEABLE;
MemAccessResult result = dcacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT && dcacheInterface->doEvents) {
memReq->completionEvent = &cacheCompletionEvent;
setStatus(DcacheMissStall);
}
}
if (res && (fault == No_Fault))
*res = memReq->result;
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
#ifdef FULL_SYSTEM
Addr
SimpleCPU::dbg_vtophys(Addr addr)
{
return vtophys(xc, addr);
}
#endif // FULL_SYSTEM
Tick save_cycle = 0;
void
SimpleCPU::processCacheCompletion()
{
switch (status()) {
case IcacheMissStall:
icacheStallCycles += curTick - lastIcacheStall;
setStatus(IcacheMissComplete);
break;
case DcacheMissStall:
dcacheStallCycles += curTick - lastDcacheStall;
setStatus(Running);
break;
default:
panic("SimpleCPU::processCacheCompletion: bad state");
break;
}
}
#ifdef FULL_SYSTEM
void
SimpleCPU::post_interrupt(int int_num, int index)
{
BaseCPU::post_interrupt(int_num, index);
if (xc->status() == ExecContext::Suspended) {
DPRINTF(IPI,"Suspended Processor awoke\n");
xc->setStatus(ExecContext::Active);
Annotate::Resume(xc);
}
}
#endif // FULL_SYSTEM
/* start simulation, program loaded, processor precise state initialized */
void
SimpleCPU::tick()
{
traceData = NULL;
#ifdef FULL_SYSTEM
if (fault == No_Fault && AlphaISA::check_interrupts &&
xc->cpu->check_interrupts() &&
!PC_PAL(xc->regs.pc) &&
status() != IcacheMissComplete) {
int ipl = 0;
int summary = 0;
AlphaISA::check_interrupts = 0;
IntReg *ipr = xc->regs.ipr;
if (xc->regs.ipr[TheISA::IPR_SIRR]) {
for (int i = TheISA::INTLEVEL_SOFTWARE_MIN;
i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) {
if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) {
// See table 4-19 of 21164 hardware reference
ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1;
summary |= (ULL(1) << i);
}
}
}
uint64_t interrupts = xc->cpu->intr_status();
for (int i = TheISA::INTLEVEL_EXTERNAL_MIN;
i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) {
if (interrupts & (ULL(1) << i)) {
// See table 4-19 of 21164 hardware reference
ipl = i;
summary |= (ULL(1) << i);
}
}
if (ipr[TheISA::IPR_ASTRR])
panic("asynchronous traps not implemented\n");
if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) {
ipr[TheISA::IPR_ISR] = summary;
ipr[TheISA::IPR_INTID] = ipl;
xc->ev5_trap(Interrupt_Fault);
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
ipr[TheISA::IPR_IPLR], ipl, summary);
}
}
#endif
// maintain $r0 semantics
xc->regs.intRegFile[ZeroReg] = 0;
#ifdef TARGET_ALPHA
xc->regs.floatRegFile.d[ZeroReg] = 0.0;
#endif // TARGET_ALPHA
if (status() == IcacheMissComplete) {
// We've already fetched an instruction and were stalled on an
// I-cache miss. No need to fetch it again.
setStatus(Running);
}
else {
// Try to fetch an instruction
// set up memory request for instruction fetch
#ifdef FULL_SYSTEM
#define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
#else
#define IFETCH_FLAGS(pc) 0
#endif
memReq->cmd = Read;
memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
IFETCH_FLAGS(xc->regs.pc));
fault = xc->translateInstReq(memReq);
if (fault == No_Fault)
fault = xc->mem->read(memReq, inst);
if (icacheInterface && fault == No_Fault) {
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~UNCACHEABLE;
MemAccessResult result = icacheInterface->access(memReq);
// Ugly hack to get an event scheduled *only* if the access is
// a miss. We really should add first-class support for this
// at some point.
if (result != MA_HIT && icacheInterface->doEvents) {
memReq->completionEvent = &cacheCompletionEvent;
setStatus(IcacheMissStall);
return;
}
}
}
// If we've got a valid instruction (i.e., no fault on instruction
// fetch), then execute it.
if (fault == No_Fault) {
// keep an instruction count
numInst++;
// check for instruction-count-based events
comInsnEventQueue[0]->serviceEvents(numInst);
// decode the instruction
StaticInstPtr<TheISA> si(inst);
traceData = Trace::getInstRecord(curTick, xc, this, si,
xc->regs.pc);
#ifdef FULL_SYSTEM
xc->regs.opcode = (inst >> 26) & 0x3f;
xc->regs.ra = (inst >> 21) & 0x1f;
#endif // FULL_SYSTEM
xc->func_exe_insn++;
fault = si->execute(this, xc, traceData);
if (si->isMemRef()) {
numMemRefs++;
}
if (si->isLoad()) {
++numLoad;
comLoadEventQueue[0]->serviceEvents(numLoad);
}
if (traceData)
traceData->finalize();
} // if (fault == No_Fault)
if (fault != No_Fault) {
#ifdef FULL_SYSTEM
xc->ev5_trap(fault);
#else // !FULL_SYSTEM
fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc);
#endif // FULL_SYSTEM
}
else {
// go to the next instruction
xc->regs.pc = xc->regs.npc;
xc->regs.npc += sizeof(MachInst);
}
#ifdef FULL_SYSTEM
Addr oldpc;
do {
oldpc = xc->regs.pc;
system->pcEventQueue.service(xc);
} while (oldpc != xc->regs.pc);
#endif
assert(status() == Running ||
status() == Idle ||
status() == DcacheMissStall);
if (status() == Running && !tickEvent.scheduled())
tickEvent.schedule(curTick + 1);
}
////////////////////////////////////////////////////////////////////////
//
// SimpleCPU Simulation Object
//
BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
#ifdef FULL_SYSTEM
SimObjectParam<AlphaItb *> itb;
SimObjectParam<AlphaDtb *> dtb;
SimObjectParam<FunctionalMemory *> mem;
SimObjectParam<System *> system;
Param<int> cpu_id;
Param<int> mult;
#else
SimObjectParam<Process *> workload;
#endif // FULL_SYSTEM
SimObjectParam<BaseMem *> icache;
SimObjectParam<BaseMem *> dcache;
END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
INIT_PARAM_DFLT(max_insts_any_thread,
"terminate when any thread reaches this insn count",
0),
INIT_PARAM_DFLT(max_insts_all_threads,
"terminate when all threads have reached this insn count",
0),
INIT_PARAM_DFLT(max_loads_any_thread,
"terminate when any thread reaches this load count",
0),
INIT_PARAM_DFLT(max_loads_all_threads,
"terminate when all threads have reached this load count",
0),
#ifdef FULL_SYSTEM
INIT_PARAM(itb, "Instruction TLB"),
INIT_PARAM(dtb, "Data TLB"),
INIT_PARAM(mem, "memory"),
INIT_PARAM(system, "system object"),
INIT_PARAM_DFLT(cpu_id, "CPU identification number", 0),
INIT_PARAM_DFLT(mult, "system clock multiplier", 1),
#else
INIT_PARAM(workload, "processes to run"),
#endif // FULL_SYSTEM
INIT_PARAM_DFLT(icache, "L1 instruction cache object", NULL),
INIT_PARAM_DFLT(dcache, "L1 data cache object", NULL)
END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
CREATE_SIM_OBJECT(SimpleCPU)
{
#ifdef FULL_SYSTEM
if (mult != 1)
panic("processor clock multiplier must be 1\n");
return new SimpleCPU(getInstanceName(), system,
max_insts_any_thread, max_insts_all_threads,
max_loads_any_thread, max_loads_all_threads,
itb, dtb, mem,
(icache) ? icache->getInterface() : NULL,
(dcache) ? dcache->getInterface() : NULL,
cpu_id, ticksPerSecond * mult);
#else
return new SimpleCPU(getInstanceName(), workload,
max_insts_any_thread, max_insts_all_threads,
max_loads_any_thread, max_loads_all_threads,
icache->getInterface(), dcache->getInterface());
#endif // FULL_SYSTEM
}
REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)