gem5/src/arch/x86/pagetable_walker.cc

577 lines
18 KiB
C++

/*
* Copyright (c) 2007 The Hewlett-Packard Development Company
* All rights reserved.
*
* Redistribution and use of this software in source and binary forms,
* with or without modification, are permitted provided that the
* following conditions are met:
*
* The software must be used only for Non-Commercial Use which means any
* use which is NOT directed to receiving any direct monetary
* compensation for, or commercial advantage from such use. Illustrative
* examples of non-commercial use are academic research, personal study,
* teaching, education and corporate research & development.
* Illustrative examples of commercial use are distributing products for
* commercial advantage and providing services using the software for
* commercial advantage.
*
* If you wish to use this software or functionality therein that may be
* covered by patents for commercial use, please contact:
* Director of Intellectual Property Licensing
* Office of Strategy and Technology
* Hewlett-Packard Company
* 1501 Page Mill Road
* Palo Alto, California 94304
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer. Redistributions
* in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution. Neither the name of
* the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission. No right of
* sublicense is granted herewith. Derivatives of the software and
* output created using the software may be prepared, but only for
* Non-Commercial Uses. Derivatives of the software may be shared with
* others provided: (i) the others agree to abide by the list of
* conditions herein which includes the Non-Commercial Use restrictions;
* and (ii) such Derivatives of the software include the above copyright
* notice to acknowledge the contribution from this software where
* applicable, this list of conditions and the disclaimer below.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
*/
#include "arch/x86/pagetable.hh"
#include "arch/x86/pagetable_walker.hh"
#include "arch/x86/tlb.hh"
#include "base/bitfield.hh"
#include "cpu/thread_context.hh"
#include "cpu/base.hh"
#include "mem/packet_access.hh"
#include "mem/request.hh"
#include "sim/system.hh"
namespace X86ISA {
// Unfortunately, the placement of the base field in a page table entry is
// very erratic and would make a mess here. It might be moved here at some
// point in the future.
BitUnion64(PageTableEntry)
Bitfield<63> nx;
Bitfield<11, 9> avl;
Bitfield<8> g;
Bitfield<7> ps;
Bitfield<6> d;
Bitfield<5> a;
Bitfield<4> pcd;
Bitfield<3> pwt;
Bitfield<2> u;
Bitfield<1> w;
Bitfield<0> p;
EndBitUnion(PageTableEntry)
Fault
Walker::doNext(PacketPtr &write)
{
assert(state != Ready && state != Waiting);
write = NULL;
PageTableEntry pte;
if (size == 8)
pte = read->get<uint64_t>();
else
pte = read->get<uint32_t>();
VAddr vaddr = entry.vaddr;
bool uncacheable = pte.pcd;
Addr nextRead = 0;
bool doWrite = false;
bool badNX = pte.nx && (!tlb->allowNX() || !enableNX);
switch(state) {
case LongPML4:
DPRINTF(PageTableWalker,
"Got long mode PML4 entry %#016x.\n", (uint64_t)pte);
nextRead = ((uint64_t)pte & (mask(40) << 12)) + vaddr.longl3 * size;
doWrite = !pte.a;
pte.a = 1;
entry.writable = pte.w;
entry.user = pte.u;
if (badNX || !pte.p) {
stop();
return pageFault(pte.p);
}
entry.noExec = pte.nx;
nextState = LongPDP;
break;
case LongPDP:
DPRINTF(PageTableWalker,
"Got long mode PDP entry %#016x.\n", (uint64_t)pte);
nextRead = ((uint64_t)pte & (mask(40) << 12)) + vaddr.longl2 * size;
doWrite = !pte.a;
pte.a = 1;
entry.writable = entry.writable && pte.w;
entry.user = entry.user && pte.u;
if (badNX || !pte.p) {
stop();
return pageFault(pte.p);
}
nextState = LongPD;
break;
case LongPD:
DPRINTF(PageTableWalker,
"Got long mode PD entry %#016x.\n", (uint64_t)pte);
doWrite = !pte.a;
pte.a = 1;
entry.writable = entry.writable && pte.w;
entry.user = entry.user && pte.u;
if (badNX || !pte.p) {
stop();
return pageFault(pte.p);
}
if (!pte.ps) {
// 4 KB page
entry.size = 4 * (1 << 10);
nextRead =
((uint64_t)pte & (mask(40) << 12)) + vaddr.longl1 * size;
nextState = LongPTE;
break;
} else {
// 2 MB page
entry.size = 2 * (1 << 20);
entry.paddr = (uint64_t)pte & (mask(31) << 21);
entry.uncacheable = uncacheable;
entry.global = pte.g;
entry.patBit = bits(pte, 12);
entry.vaddr = entry.vaddr & ~((2 * (1 << 20)) - 1);
tlb->insert(entry.vaddr, entry);
stop();
return NoFault;
}
case LongPTE:
DPRINTF(PageTableWalker,
"Got long mode PTE entry %#016x.\n", (uint64_t)pte);
doWrite = !pte.a;
pte.a = 1;
entry.writable = entry.writable && pte.w;
entry.user = entry.user && pte.u;
if (badNX || !pte.p) {
stop();
return pageFault(pte.p);
}
entry.paddr = (uint64_t)pte & (mask(40) << 12);
entry.uncacheable = uncacheable;
entry.global = pte.g;
entry.patBit = bits(pte, 12);
entry.vaddr = entry.vaddr & ~((4 * (1 << 10)) - 1);
tlb->insert(entry.vaddr, entry);
stop();
return NoFault;
case PAEPDP:
DPRINTF(PageTableWalker,
"Got legacy mode PAE PDP entry %#08x.\n", (uint32_t)pte);
nextRead = ((uint64_t)pte & (mask(40) << 12)) + vaddr.pael2 * size;
if (!pte.p) {
stop();
return pageFault(pte.p);
}
nextState = PAEPD;
break;
case PAEPD:
DPRINTF(PageTableWalker,
"Got legacy mode PAE PD entry %#08x.\n", (uint32_t)pte);
doWrite = !pte.a;
pte.a = 1;
entry.writable = pte.w;
entry.user = pte.u;
if (badNX || !pte.p) {
stop();
return pageFault(pte.p);
}
if (!pte.ps) {
// 4 KB page
entry.size = 4 * (1 << 10);
nextRead = ((uint64_t)pte & (mask(40) << 12)) + vaddr.pael1 * size;
nextState = PAEPTE;
break;
} else {
// 2 MB page
entry.size = 2 * (1 << 20);
entry.paddr = (uint64_t)pte & (mask(31) << 21);
entry.uncacheable = uncacheable;
entry.global = pte.g;
entry.patBit = bits(pte, 12);
entry.vaddr = entry.vaddr & ~((2 * (1 << 20)) - 1);
tlb->insert(entry.vaddr, entry);
stop();
return NoFault;
}
case PAEPTE:
DPRINTF(PageTableWalker,
"Got legacy mode PAE PTE entry %#08x.\n", (uint32_t)pte);
doWrite = !pte.a;
pte.a = 1;
entry.writable = entry.writable && pte.w;
entry.user = entry.user && pte.u;
if (badNX || !pte.p) {
stop();
return pageFault(pte.p);
}
entry.paddr = (uint64_t)pte & (mask(40) << 12);
entry.uncacheable = uncacheable;
entry.global = pte.g;
entry.patBit = bits(pte, 7);
entry.vaddr = entry.vaddr & ~((4 * (1 << 10)) - 1);
tlb->insert(entry.vaddr, entry);
stop();
return NoFault;
case PSEPD:
DPRINTF(PageTableWalker,
"Got legacy mode PSE PD entry %#08x.\n", (uint32_t)pte);
doWrite = !pte.a;
pte.a = 1;
entry.writable = pte.w;
entry.user = pte.u;
if (!pte.p) {
stop();
return pageFault(pte.p);
}
if (!pte.ps) {
// 4 KB page
entry.size = 4 * (1 << 10);
nextRead =
((uint64_t)pte & (mask(20) << 12)) + vaddr.norml2 * size;
nextState = PTE;
break;
} else {
// 4 MB page
entry.size = 4 * (1 << 20);
entry.paddr = bits(pte, 20, 13) << 32 | bits(pte, 31, 22) << 22;
entry.uncacheable = uncacheable;
entry.global = pte.g;
entry.patBit = bits(pte, 12);
entry.vaddr = entry.vaddr & ~((4 * (1 << 20)) - 1);
tlb->insert(entry.vaddr, entry);
stop();
return NoFault;
}
case PD:
DPRINTF(PageTableWalker,
"Got legacy mode PD entry %#08x.\n", (uint32_t)pte);
doWrite = !pte.a;
pte.a = 1;
entry.writable = pte.w;
entry.user = pte.u;
if (!pte.p) {
stop();
return pageFault(pte.p);
}
// 4 KB page
entry.size = 4 * (1 << 10);
nextRead = ((uint64_t)pte & (mask(20) << 12)) + vaddr.norml2 * size;
nextState = PTE;
break;
case PTE:
DPRINTF(PageTableWalker,
"Got legacy mode PTE entry %#08x.\n", (uint32_t)pte);
doWrite = !pte.a;
pte.a = 1;
entry.writable = pte.w;
entry.user = pte.u;
if (!pte.p) {
stop();
return pageFault(pte.p);
}
entry.paddr = (uint64_t)pte & (mask(20) << 12);
entry.uncacheable = uncacheable;
entry.global = pte.g;
entry.patBit = bits(pte, 7);
entry.vaddr = entry.vaddr & ~((4 * (1 << 10)) - 1);
tlb->insert(entry.vaddr, entry);
stop();
return NoFault;
default:
panic("Unknown page table walker state %d!\n");
}
PacketPtr oldRead = read;
//If we didn't return, we're setting up another read.
Request::Flags flags = oldRead->req->getFlags();
flags.set(Request::UNCACHEABLE, uncacheable);
RequestPtr request =
new Request(nextRead, oldRead->getSize(), flags);
read = new Packet(request, MemCmd::ReadExReq, Packet::Broadcast);
read->allocate();
//If we need to write, adjust the read packet to write the modified value
//back to memory.
if (doWrite) {
write = oldRead;
write->set<uint64_t>(pte);
write->cmd = MemCmd::WriteReq;
write->setDest(Packet::Broadcast);
} else {
write = NULL;
delete oldRead->req;
delete oldRead;
}
return NoFault;
}
Fault
Walker::start(ThreadContext * _tc, BaseTLB::Translation *_translation,
RequestPtr _req, bool _write, bool _execute)
{
assert(state == Ready);
tc = _tc;
req = _req;
Addr vaddr = req->getVaddr();
execute = _execute;
write = _write;
translation = _translation;
VAddr addr = vaddr;
//Figure out what we're doing.
CR3 cr3 = tc->readMiscRegNoEffect(MISCREG_CR3);
Addr top = 0;
// Check if we're in long mode or not
Efer efer = tc->readMiscRegNoEffect(MISCREG_EFER);
size = 8;
if (efer.lma) {
// Do long mode.
state = LongPML4;
top = (cr3.longPdtb << 12) + addr.longl4 * size;
enableNX = efer.nxe;
} else {
// We're in some flavor of legacy mode.
CR4 cr4 = tc->readMiscRegNoEffect(MISCREG_CR4);
if (cr4.pae) {
// Do legacy PAE.
state = PAEPDP;
top = (cr3.paePdtb << 5) + addr.pael3 * size;
enableNX = efer.nxe;
} else {
size = 4;
top = (cr3.pdtb << 12) + addr.norml2 * size;
if (cr4.pse) {
// Do legacy PSE.
state = PSEPD;
} else {
// Do legacy non PSE.
state = PD;
}
enableNX = false;
}
}
nextState = Ready;
entry.vaddr = vaddr;
Request::Flags flags = Request::PHYSICAL;
if (cr3.pcd)
flags.set(Request::UNCACHEABLE);
RequestPtr request = new Request(top, size, flags);
read = new Packet(request, MemCmd::ReadExReq, Packet::Broadcast);
read->allocate();
Enums::MemoryMode memMode = sys->getMemoryMode();
if (memMode == Enums::timing) {
nextState = state;
state = Waiting;
timingFault = NoFault;
sendPackets();
} else if (memMode == Enums::atomic) {
Fault fault;
do {
port.sendAtomic(read);
PacketPtr write = NULL;
fault = doNext(write);
assert(fault == NoFault || read == NULL);
state = nextState;
nextState = Ready;
if (write)
port.sendAtomic(write);
} while(read);
state = Ready;
nextState = Waiting;
return fault;
} else {
panic("Unrecognized memory system mode.\n");
}
return NoFault;
}
bool
Walker::WalkerPort::recvTiming(PacketPtr pkt)
{
return walker->recvTiming(pkt);
}
bool
Walker::recvTiming(PacketPtr pkt)
{
if (pkt->isResponse() && !pkt->wasNacked()) {
assert(inflight);
assert(state == Waiting);
assert(!read);
inflight--;
if (pkt->isRead()) {
state = nextState;
nextState = Ready;
PacketPtr write = NULL;
read = pkt;
timingFault = doNext(write);
state = Waiting;
assert(timingFault == NoFault || read == NULL);
if (write) {
writes.push_back(write);
}
sendPackets();
} else {
sendPackets();
}
if (inflight == 0 && read == NULL && writes.size() == 0) {
state = Ready;
nextState = Waiting;
if (timingFault == NoFault) {
/*
* Finish the translation. Now that we now the right entry is
* in the TLB, this should work with no memory accesses.
* There could be new faults unrelated to the table walk like
* permissions violations, so we'll need the return value as
* well.
*/
bool delayedResponse;
Fault fault = tlb->translate(req, tc, NULL, write, execute,
delayedResponse, true);
assert(!delayedResponse);
// Let the CPU continue.
translation->finish(fault, req, tc, write);
} else {
// There was a fault during the walk. Let the CPU know.
translation->finish(timingFault, req, tc, write);
}
}
} else if (pkt->wasNacked()) {
pkt->reinitNacked();
if (!port.sendTiming(pkt)) {
inflight--;
retrying = true;
if (pkt->isWrite()) {
writes.push_back(pkt);
} else {
assert(!read);
read = pkt;
}
}
}
return true;
}
Tick
Walker::WalkerPort::recvAtomic(PacketPtr pkt)
{
return 0;
}
void
Walker::WalkerPort::recvFunctional(PacketPtr pkt)
{
return;
}
void
Walker::WalkerPort::recvStatusChange(Status status)
{
if (status == RangeChange) {
if (!snoopRangeSent) {
snoopRangeSent = true;
sendStatusChange(Port::RangeChange);
}
return;
}
panic("Unexpected recvStatusChange.\n");
}
void
Walker::WalkerPort::recvRetry()
{
walker->recvRetry();
}
void
Walker::recvRetry()
{
retrying = false;
sendPackets();
}
void
Walker::sendPackets()
{
//If we're already waiting for the port to become available, just return.
if (retrying)
return;
//Reads always have priority
if (read) {
PacketPtr pkt = read;
read = NULL;
inflight++;
if (!port.sendTiming(pkt)) {
retrying = true;
read = pkt;
inflight--;
return;
}
}
//Send off as many of the writes as we can.
while (writes.size()) {
PacketPtr write = writes.back();
writes.pop_back();
inflight++;
if (!port.sendTiming(write)) {
retrying = true;
writes.push_back(write);
inflight--;
return;
}
}
}
Port *
Walker::getPort(const std::string &if_name, int idx)
{
if (if_name == "port")
return &port;
else
panic("No page table walker port named %s!\n", if_name);
}
Fault
Walker::pageFault(bool present)
{
DPRINTF(PageTableWalker, "Raising page fault.\n");
HandyM5Reg m5reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
return new PageFault(entry.vaddr, present, write,
m5reg.cpl == 3, false, execute && enableNX);
}
}
X86ISA::Walker *
X86PagetableWalkerParams::create()
{
return new X86ISA::Walker(this);
}