gem5/arch/alpha/ev5.cc
Nathan Binkert 425dda00df Macros are nasty, so let's get rid of them. Convert all
all macros in ev5.hh to inline functions or constant typed
variables and make them follow our style while we're at it.

All of the stuff in this file actually belongs in the ISA
traits code, but this is a first step at getting things done
in the right manner.

arch/alpha/alpha_memory.cc:
arch/alpha/alpha_memory.hh:
arch/alpha/ev5.cc:
arch/alpha/isa_desc:
dev/ns_gige.cc:
kern/tru64/tru64_events.cc:
    deal with changes in ev5.hh
arch/alpha/ev5.hh:
    Macros are nasty, so let's get rid of them.  Convert all
    all macros to inline functions or constant typed variables.
    Make them follow our style while we're at it.

    All of the stuff in this file actually belongs in the ISA
    traits code, but this is a first step at getting things done
    in the right manner.
arch/alpha/isa_traits.hh:
    move some of the ev5 specific code into the isa
arch/alpha/vtophys.cc:
base/remote_gdb.cc:
    deal with isa addition
cpu/exec_context.hh:
    be less isa specific and use the isa traits to figure out
    what we can.
dev/alpha_console.cc:
dev/pciconfigall.cc:
dev/tsunami_cchip.cc:
dev/tsunami_io.cc:
dev/tsunami_pchip.cc:
dev/uart.cc:
    deal with changes in ev5.hh
    I don't believe this masking is actually necessary.  We should
    look at removing it later.
dev/ide_ctrl.cc:
    sort #includes
    deal with changes in ev5.hh

--HG--
extra : convert_revision : c8a3adf0a4b1d198aefe38fc38b295abf289b08a
2004-11-13 14:01:38 -05:00

653 lines
17 KiB
C++

/* $Id$ */
#include "arch/alpha/alpha_memory.hh"
#include "arch/alpha/isa_traits.hh"
#include "arch/alpha/osfpal.hh"
#include "base/kgdb.h"
#include "base/remote_gdb.hh"
#include "base/stats/events.hh"
#include "cpu/base_cpu.hh"
#include "cpu/exec_context.hh"
#include "cpu/fast_cpu/fast_cpu.hh"
#include "kern/kernel_stats.hh"
#include "sim/debug.hh"
#include "sim/sim_events.hh"
#ifdef FULL_SYSTEM
using namespace EV5;
////////////////////////////////////////////////////////////////////////
//
//
//
void
AlphaISA::swap_palshadow(RegFile *regs, bool use_shadow)
{
if (regs->pal_shadow == use_shadow)
panic("swap_palshadow: wrong PAL shadow state");
regs->pal_shadow = use_shadow;
for (int i = 0; i < NumIntRegs; i++) {
if (reg_redir[i]) {
IntReg temp = regs->intRegFile[i];
regs->intRegFile[i] = regs->palregs[i];
regs->palregs[i] = temp;
}
}
}
////////////////////////////////////////////////////////////////////////
//
// Machine dependent functions
//
void
AlphaISA::initCPU(RegFile *regs)
{
initIPRs(regs);
// CPU comes up with PAL regs enabled
swap_palshadow(regs, true);
regs->pc = regs->ipr[IPR_PAL_BASE] + fault_addr[Reset_Fault];
regs->npc = regs->pc + sizeof(MachInst);
}
////////////////////////////////////////////////////////////////////////
//
// alpha exceptions - value equals trap address, update with MD_FAULT_TYPE
//
Addr
AlphaISA::fault_addr[Num_Faults] = {
0x0000, /* No_Fault */
0x0001, /* Reset_Fault */
0x0401, /* Machine_Check_Fault */
0x0501, /* Arithmetic_Fault */
0x0101, /* Interrupt_Fault */
0x0201, /* Ndtb_Miss_Fault */
0x0281, /* Pdtb_Miss_Fault */
0x0301, /* Alignment_Fault */
0x0381, /* DTB_Fault_Fault */
0x0381, /* DTB_Acv_Fault */
0x0181, /* ITB_Miss_Fault */
0x0181, /* ITB_Fault_Fault */
0x0081, /* ITB_Acv_Fault */
0x0481, /* Unimplemented_Opcode_Fault */
0x0581, /* Fen_Fault */
0x2001, /* Pal_Fault */
0x0501, /* Integer_Overflow_Fault: maps to Arithmetic_Fault */
};
const int AlphaISA::reg_redir[AlphaISA::NumIntRegs] = {
/* 0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 8 */ 1, 1, 1, 1, 1, 1, 1, 0,
/* 16 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 24 */ 0, 1, 0, 0, 0, 0, 0, 0 };
////////////////////////////////////////////////////////////////////////
//
//
//
void
AlphaISA::initIPRs(RegFile *regs)
{
uint64_t *ipr = regs->ipr;
bzero((char *)ipr, NumInternalProcRegs * sizeof(InternalProcReg));
ipr[IPR_PAL_BASE] = PalBase;
ipr[IPR_MCSR] = 0x6;
}
template <class CPU>
void
AlphaISA::processInterrupts(CPU *cpu)
{
//Check if there are any outstanding interrupts
//Handle the interrupts
int ipl = 0;
int summary = 0;
IntReg *ipr = cpu->getIprPtr();
cpu->checkInterrupts = false;
if (ipr[IPR_ASTRR])
panic("asynchronous traps not implemented\n");
if (ipr[IPR_SIRR]) {
for (int i = INTLEVEL_SOFTWARE_MIN;
i < INTLEVEL_SOFTWARE_MAX; i++) {
if (ipr[IPR_SIRR] & (ULL(1) << i)) {
// See table 4-19 of the 21164 hardware reference
ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1;
summary |= (ULL(1) << i);
}
}
}
uint64_t interrupts = cpu->intr_status();
if (interrupts) {
for (int i = INTLEVEL_EXTERNAL_MIN;
i < INTLEVEL_EXTERNAL_MAX; i++) {
if (interrupts & (ULL(1) << i)) {
// See table 4-19 of the 21164 hardware reference
ipl = i;
summary |= (ULL(1) << i);
}
}
}
if (ipl && ipl > ipr[IPR_IPLR]) {
ipr[IPR_ISR] = summary;
ipr[IPR_INTID] = ipl;
cpu->trap(Interrupt_Fault);
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
ipr[IPR_IPLR], ipl, summary);
}
}
template <class CPU>
void
AlphaISA::zeroRegisters(CPU *cpu)
{
// Insure ISA semantics
// (no longer very clean due to the change in setIntReg() in the
// cpu model. Consider changing later.)
cpu->xc->setIntReg(ZeroReg, 0);
cpu->xc->setFloatRegDouble(ZeroReg, 0.0);
}
void
ExecContext::ev5_trap(Fault fault)
{
DPRINTF(Fault, "Fault %s at PC: %#x\n", FaultName(fault), regs.pc);
cpu->recordEvent(csprintf("Fault %s", FaultName(fault)));
assert(!misspeculating());
kernelStats->fault(fault);
if (fault == Arithmetic_Fault)
panic("Arithmetic traps are unimplemented!");
AlphaISA::InternalProcReg *ipr = regs.ipr;
// exception restart address
if (fault != Interrupt_Fault || !inPalMode())
ipr[AlphaISA::IPR_EXC_ADDR] = regs.pc;
if (fault == Pal_Fault || fault == Arithmetic_Fault /* ||
fault == Interrupt_Fault && !inPalMode() */) {
// traps... skip faulting instruction
ipr[AlphaISA::IPR_EXC_ADDR] += 4;
}
if (!inPalMode())
AlphaISA::swap_palshadow(&regs, true);
regs.pc = ipr[AlphaISA::IPR_PAL_BASE] + AlphaISA::fault_addr[fault];
regs.npc = regs.pc + sizeof(MachInst);
}
void
AlphaISA::intr_post(RegFile *regs, Fault fault, Addr pc)
{
InternalProcReg *ipr = regs->ipr;
bool use_pc = (fault == No_Fault);
if (fault == Arithmetic_Fault)
panic("arithmetic faults NYI...");
// compute exception restart address
if (use_pc || fault == Pal_Fault || fault == Arithmetic_Fault) {
// traps... skip faulting instruction
ipr[IPR_EXC_ADDR] = regs->pc + 4;
} else {
// fault, post fault at excepting instruction
ipr[IPR_EXC_ADDR] = regs->pc;
}
// jump to expection address (PAL PC bit set here as well...)
if (!use_pc)
regs->npc = ipr[IPR_PAL_BASE] + fault_addr[fault];
else
regs->npc = ipr[IPR_PAL_BASE] + pc;
// that's it! (orders of magnitude less painful than x86)
}
Fault
ExecContext::hwrei()
{
uint64_t *ipr = regs.ipr;
if (!inPalMode())
return Unimplemented_Opcode_Fault;
setNextPC(ipr[AlphaISA::IPR_EXC_ADDR]);
if (!misspeculating()) {
kernelStats->hwrei();
if ((ipr[AlphaISA::IPR_EXC_ADDR] & 1) == 0)
AlphaISA::swap_palshadow(&regs, false);
cpu->checkInterrupts = true;
}
// FIXME: XXX check for interrupts? XXX
return No_Fault;
}
uint64_t
ExecContext::readIpr(int idx, Fault &fault)
{
uint64_t *ipr = regs.ipr;
uint64_t retval = 0; // return value, default 0
switch (idx) {
case AlphaISA::IPR_PALtemp0:
case AlphaISA::IPR_PALtemp1:
case AlphaISA::IPR_PALtemp2:
case AlphaISA::IPR_PALtemp3:
case AlphaISA::IPR_PALtemp4:
case AlphaISA::IPR_PALtemp5:
case AlphaISA::IPR_PALtemp6:
case AlphaISA::IPR_PALtemp7:
case AlphaISA::IPR_PALtemp8:
case AlphaISA::IPR_PALtemp9:
case AlphaISA::IPR_PALtemp10:
case AlphaISA::IPR_PALtemp11:
case AlphaISA::IPR_PALtemp12:
case AlphaISA::IPR_PALtemp13:
case AlphaISA::IPR_PALtemp14:
case AlphaISA::IPR_PALtemp15:
case AlphaISA::IPR_PALtemp16:
case AlphaISA::IPR_PALtemp17:
case AlphaISA::IPR_PALtemp18:
case AlphaISA::IPR_PALtemp19:
case AlphaISA::IPR_PALtemp20:
case AlphaISA::IPR_PALtemp21:
case AlphaISA::IPR_PALtemp22:
case AlphaISA::IPR_PALtemp23:
case AlphaISA::IPR_PAL_BASE:
case AlphaISA::IPR_IVPTBR:
case AlphaISA::IPR_DC_MODE:
case AlphaISA::IPR_MAF_MODE:
case AlphaISA::IPR_ISR:
case AlphaISA::IPR_EXC_ADDR:
case AlphaISA::IPR_IC_PERR_STAT:
case AlphaISA::IPR_DC_PERR_STAT:
case AlphaISA::IPR_MCSR:
case AlphaISA::IPR_ASTRR:
case AlphaISA::IPR_ASTER:
case AlphaISA::IPR_SIRR:
case AlphaISA::IPR_ICSR:
case AlphaISA::IPR_ICM:
case AlphaISA::IPR_DTB_CM:
case AlphaISA::IPR_IPLR:
case AlphaISA::IPR_INTID:
case AlphaISA::IPR_PMCTR:
// no side-effect
retval = ipr[idx];
break;
case AlphaISA::IPR_CC:
retval |= ipr[idx] & ULL(0xffffffff00000000);
retval |= curTick & ULL(0x00000000ffffffff);
break;
case AlphaISA::IPR_VA:
retval = ipr[idx];
break;
case AlphaISA::IPR_VA_FORM:
case AlphaISA::IPR_MM_STAT:
case AlphaISA::IPR_IFAULT_VA_FORM:
case AlphaISA::IPR_EXC_MASK:
case AlphaISA::IPR_EXC_SUM:
retval = ipr[idx];
break;
case AlphaISA::IPR_DTB_PTE:
{
AlphaISA::PTE &pte = dtb->index(!misspeculating());
retval |= ((u_int64_t)pte.ppn & ULL(0x7ffffff)) << 32;
retval |= ((u_int64_t)pte.xre & ULL(0xf)) << 8;
retval |= ((u_int64_t)pte.xwe & ULL(0xf)) << 12;
retval |= ((u_int64_t)pte.fonr & ULL(0x1)) << 1;
retval |= ((u_int64_t)pte.fonw & ULL(0x1))<< 2;
retval |= ((u_int64_t)pte.asma & ULL(0x1)) << 4;
retval |= ((u_int64_t)pte.asn & ULL(0x7f)) << 57;
}
break;
// write only registers
case AlphaISA::IPR_HWINT_CLR:
case AlphaISA::IPR_SL_XMIT:
case AlphaISA::IPR_DC_FLUSH:
case AlphaISA::IPR_IC_FLUSH:
case AlphaISA::IPR_ALT_MODE:
case AlphaISA::IPR_DTB_IA:
case AlphaISA::IPR_DTB_IAP:
case AlphaISA::IPR_ITB_IA:
case AlphaISA::IPR_ITB_IAP:
fault = Unimplemented_Opcode_Fault;
break;
default:
// invalid IPR
fault = Unimplemented_Opcode_Fault;
break;
}
return retval;
}
#ifdef DEBUG
// Cause the simulator to break when changing to the following IPL
int break_ipl = -1;
#endif
Fault
ExecContext::setIpr(int idx, uint64_t val)
{
uint64_t *ipr = regs.ipr;
uint64_t old;
if (misspeculating())
return No_Fault;
switch (idx) {
case AlphaISA::IPR_PALtemp0:
case AlphaISA::IPR_PALtemp1:
case AlphaISA::IPR_PALtemp2:
case AlphaISA::IPR_PALtemp3:
case AlphaISA::IPR_PALtemp4:
case AlphaISA::IPR_PALtemp5:
case AlphaISA::IPR_PALtemp6:
case AlphaISA::IPR_PALtemp7:
case AlphaISA::IPR_PALtemp8:
case AlphaISA::IPR_PALtemp9:
case AlphaISA::IPR_PALtemp10:
case AlphaISA::IPR_PALtemp11:
case AlphaISA::IPR_PALtemp12:
case AlphaISA::IPR_PALtemp13:
case AlphaISA::IPR_PALtemp14:
case AlphaISA::IPR_PALtemp15:
case AlphaISA::IPR_PALtemp16:
case AlphaISA::IPR_PALtemp17:
case AlphaISA::IPR_PALtemp18:
case AlphaISA::IPR_PALtemp19:
case AlphaISA::IPR_PALtemp20:
case AlphaISA::IPR_PALtemp21:
case AlphaISA::IPR_PALtemp22:
case AlphaISA::IPR_PAL_BASE:
case AlphaISA::IPR_IC_PERR_STAT:
case AlphaISA::IPR_DC_PERR_STAT:
case AlphaISA::IPR_PMCTR:
// write entire quad w/ no side-effect
ipr[idx] = val;
break;
case AlphaISA::IPR_CC_CTL:
// This IPR resets the cycle counter. We assume this only
// happens once... let's verify that.
assert(ipr[idx] == 0);
ipr[idx] = 1;
break;
case AlphaISA::IPR_CC:
// This IPR only writes the upper 64 bits. It's ok to write
// all 64 here since we mask out the lower 32 in rpcc (see
// isa_desc).
ipr[idx] = val;
break;
case AlphaISA::IPR_PALtemp23:
// write entire quad w/ no side-effect
old = ipr[idx];
ipr[idx] = val;
kernelStats->context(old, val);
break;
case AlphaISA::IPR_DTB_PTE:
// write entire quad w/ no side-effect, tag is forthcoming
ipr[idx] = val;
break;
case AlphaISA::IPR_EXC_ADDR:
// second least significant bit in PC is always zero
ipr[idx] = val & ~2;
break;
case AlphaISA::IPR_ASTRR:
case AlphaISA::IPR_ASTER:
// only write least significant four bits - privilege mask
ipr[idx] = val & 0xf;
break;
case AlphaISA::IPR_IPLR:
#ifdef DEBUG
if (break_ipl != -1 && break_ipl == (val & 0x1f))
debug_break();
#endif
// only write least significant five bits - interrupt level
ipr[idx] = val & 0x1f;
kernelStats->swpipl(ipr[idx]);
break;
case AlphaISA::IPR_DTB_CM:
if (val & 0x18)
kernelStats->mode(Kernel::user);
else
kernelStats->mode(Kernel::kernel);
case AlphaISA::IPR_ICM:
// only write two mode bits - processor mode
ipr[idx] = val & 0x18;
break;
case AlphaISA::IPR_ALT_MODE:
// only write two mode bits - processor mode
ipr[idx] = val & 0x18;
break;
case AlphaISA::IPR_MCSR:
// more here after optimization...
ipr[idx] = val;
break;
case AlphaISA::IPR_SIRR:
// only write software interrupt mask
ipr[idx] = val & 0x7fff0;
break;
case AlphaISA::IPR_ICSR:
ipr[idx] = val & ULL(0xffffff0300);
break;
case AlphaISA::IPR_IVPTBR:
case AlphaISA::IPR_MVPTBR:
ipr[idx] = val & ULL(0xffffffffc0000000);
break;
case AlphaISA::IPR_DC_TEST_CTL:
ipr[idx] = val & 0x1ffb;
break;
case AlphaISA::IPR_DC_MODE:
case AlphaISA::IPR_MAF_MODE:
ipr[idx] = val & 0x3f;
break;
case AlphaISA::IPR_ITB_ASN:
ipr[idx] = val & 0x7f0;
break;
case AlphaISA::IPR_DTB_ASN:
ipr[idx] = val & ULL(0xfe00000000000000);
break;
case AlphaISA::IPR_EXC_SUM:
case AlphaISA::IPR_EXC_MASK:
// any write to this register clears it
ipr[idx] = 0;
break;
case AlphaISA::IPR_INTID:
case AlphaISA::IPR_SL_RCV:
case AlphaISA::IPR_MM_STAT:
case AlphaISA::IPR_ITB_PTE_TEMP:
case AlphaISA::IPR_DTB_PTE_TEMP:
// read-only registers
return Unimplemented_Opcode_Fault;
case AlphaISA::IPR_HWINT_CLR:
case AlphaISA::IPR_SL_XMIT:
case AlphaISA::IPR_DC_FLUSH:
case AlphaISA::IPR_IC_FLUSH:
// the following are write only
ipr[idx] = val;
break;
case AlphaISA::IPR_DTB_IA:
// really a control write
ipr[idx] = 0;
dtb->flushAll();
break;
case AlphaISA::IPR_DTB_IAP:
// really a control write
ipr[idx] = 0;
dtb->flushProcesses();
break;
case AlphaISA::IPR_DTB_IS:
// really a control write
ipr[idx] = val;
dtb->flushAddr(val, DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]));
break;
case AlphaISA::IPR_DTB_TAG: {
struct AlphaISA::PTE pte;
// FIXME: granularity hints NYI...
if (DTB_PTE_GH(ipr[AlphaISA::IPR_DTB_PTE]) != 0)
panic("PTE GH field != 0");
// write entire quad
ipr[idx] = val;
// construct PTE for new entry
pte.ppn = DTB_PTE_PPN(ipr[AlphaISA::IPR_DTB_PTE]);
pte.xre = DTB_PTE_XRE(ipr[AlphaISA::IPR_DTB_PTE]);
pte.xwe = DTB_PTE_XWE(ipr[AlphaISA::IPR_DTB_PTE]);
pte.fonr = DTB_PTE_FONR(ipr[AlphaISA::IPR_DTB_PTE]);
pte.fonw = DTB_PTE_FONW(ipr[AlphaISA::IPR_DTB_PTE]);
pte.asma = DTB_PTE_ASMA(ipr[AlphaISA::IPR_DTB_PTE]);
pte.asn = DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]);
// insert new TAG/PTE value into data TLB
dtb->insert(val, pte);
}
break;
case AlphaISA::IPR_ITB_PTE: {
struct AlphaISA::PTE pte;
// FIXME: granularity hints NYI...
if (ITB_PTE_GH(val) != 0)
panic("PTE GH field != 0");
// write entire quad
ipr[idx] = val;
// construct PTE for new entry
pte.ppn = ITB_PTE_PPN(val);
pte.xre = ITB_PTE_XRE(val);
pte.xwe = 0;
pte.fonr = ITB_PTE_FONR(val);
pte.fonw = ITB_PTE_FONW(val);
pte.asma = ITB_PTE_ASMA(val);
pte.asn = ITB_ASN_ASN(ipr[AlphaISA::IPR_ITB_ASN]);
// insert new TAG/PTE value into data TLB
itb->insert(ipr[AlphaISA::IPR_ITB_TAG], pte);
}
break;
case AlphaISA::IPR_ITB_IA:
// really a control write
ipr[idx] = 0;
itb->flushAll();
break;
case AlphaISA::IPR_ITB_IAP:
// really a control write
ipr[idx] = 0;
itb->flushProcesses();
break;
case AlphaISA::IPR_ITB_IS:
// really a control write
ipr[idx] = val;
itb->flushAddr(val, ITB_ASN_ASN(ipr[AlphaISA::IPR_ITB_ASN]));
break;
default:
// invalid IPR
return Unimplemented_Opcode_Fault;
}
// no error...
return No_Fault;
}
/**
* Check for special simulator handling of specific PAL calls.
* If return value is false, actual PAL call will be suppressed.
*/
bool
ExecContext::simPalCheck(int palFunc)
{
kernelStats->callpal(palFunc);
switch (palFunc) {
case PAL::halt:
halt();
if (--System::numSystemsRunning == 0)
new SimExitEvent("all cpus halted");
break;
case PAL::bpt:
case PAL::bugchk:
if (system->breakpoint())
return false;
break;
}
return true;
}
//Forward instantiation for FastCPU object
template
void AlphaISA::processInterrupts(FastCPU *xc);
//Forward instantiation for FastCPU object
template
void AlphaISA::zeroRegisters(FastCPU *xc);
#endif // FULL_SYSTEM