a5feaa6a69
When implementing timing address translations instead of atomic, I forgot to preserve the faults that are returned from the read and write calls. This patch reinstates them.
1012 lines
33 KiB
C++
1012 lines
33 KiB
C++
/*
|
|
* Copyright (c) 2004-2006 The Regents of The University of Michigan
|
|
* Copyright (c) 2009 The University of Edinburgh
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Authors: Kevin Lim
|
|
* Timothy M. Jones
|
|
*/
|
|
|
|
#ifndef __CPU_BASE_DYN_INST_HH__
|
|
#define __CPU_BASE_DYN_INST_HH__
|
|
|
|
#include <bitset>
|
|
#include <list>
|
|
#include <string>
|
|
|
|
#include "arch/faults.hh"
|
|
#include "base/fast_alloc.hh"
|
|
#include "base/trace.hh"
|
|
#include "config/full_system.hh"
|
|
#include "config/the_isa.hh"
|
|
#include "cpu/o3/comm.hh"
|
|
#include "cpu/exetrace.hh"
|
|
#include "cpu/inst_seq.hh"
|
|
#include "cpu/op_class.hh"
|
|
#include "cpu/static_inst.hh"
|
|
#include "cpu/translation.hh"
|
|
#include "mem/packet.hh"
|
|
#include "sim/system.hh"
|
|
#include "sim/tlb.hh"
|
|
|
|
/**
|
|
* @file
|
|
* Defines a dynamic instruction context.
|
|
*/
|
|
|
|
// Forward declaration.
|
|
class StaticInstPtr;
|
|
|
|
template <class Impl>
|
|
class BaseDynInst : public FastAlloc, public RefCounted
|
|
{
|
|
public:
|
|
// Typedef for the CPU.
|
|
typedef typename Impl::CPUType ImplCPU;
|
|
typedef typename ImplCPU::ImplState ImplState;
|
|
|
|
// Logical register index type.
|
|
typedef TheISA::RegIndex RegIndex;
|
|
// Integer register type.
|
|
typedef TheISA::IntReg IntReg;
|
|
// Floating point register type.
|
|
typedef TheISA::FloatReg FloatReg;
|
|
|
|
// The DynInstPtr type.
|
|
typedef typename Impl::DynInstPtr DynInstPtr;
|
|
|
|
// The list of instructions iterator type.
|
|
typedef typename std::list<DynInstPtr>::iterator ListIt;
|
|
|
|
enum {
|
|
MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
|
|
MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
|
|
};
|
|
|
|
/** The StaticInst used by this BaseDynInst. */
|
|
StaticInstPtr staticInst;
|
|
|
|
////////////////////////////////////////////
|
|
//
|
|
// INSTRUCTION EXECUTION
|
|
//
|
|
////////////////////////////////////////////
|
|
/** InstRecord that tracks this instructions. */
|
|
Trace::InstRecord *traceData;
|
|
|
|
void demapPage(Addr vaddr, uint64_t asn)
|
|
{
|
|
cpu->demapPage(vaddr, asn);
|
|
}
|
|
void demapInstPage(Addr vaddr, uint64_t asn)
|
|
{
|
|
cpu->demapPage(vaddr, asn);
|
|
}
|
|
void demapDataPage(Addr vaddr, uint64_t asn)
|
|
{
|
|
cpu->demapPage(vaddr, asn);
|
|
}
|
|
|
|
/**
|
|
* Does a read to a given address.
|
|
* @param addr The address to read.
|
|
* @param data The read's data is written into this parameter.
|
|
* @param flags The request's flags.
|
|
* @return Returns any fault due to the read.
|
|
*/
|
|
template <class T>
|
|
Fault read(Addr addr, T &data, unsigned flags);
|
|
|
|
/**
|
|
* Does a write to a given address.
|
|
* @param data The data to be written.
|
|
* @param addr The address to write to.
|
|
* @param flags The request's flags.
|
|
* @param res The result of the write (for load locked/store conditionals).
|
|
* @return Returns any fault due to the write.
|
|
*/
|
|
template <class T>
|
|
Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
|
|
|
|
/** Splits a request in two if it crosses a dcache block. */
|
|
void splitRequest(RequestPtr req, RequestPtr &sreqLow,
|
|
RequestPtr &sreqHigh);
|
|
|
|
/** Initiate a DTB address translation. */
|
|
void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
|
|
RequestPtr sreqHigh, uint64_t *res,
|
|
BaseTLB::Mode mode);
|
|
|
|
/** Finish a DTB address translation. */
|
|
void finishTranslation(WholeTranslationState *state);
|
|
|
|
void prefetch(Addr addr, unsigned flags);
|
|
void writeHint(Addr addr, int size, unsigned flags);
|
|
Fault copySrcTranslate(Addr src);
|
|
Fault copy(Addr dest);
|
|
|
|
/** @todo: Consider making this private. */
|
|
public:
|
|
/** The sequence number of the instruction. */
|
|
InstSeqNum seqNum;
|
|
|
|
enum Status {
|
|
IqEntry, /// Instruction is in the IQ
|
|
RobEntry, /// Instruction is in the ROB
|
|
LsqEntry, /// Instruction is in the LSQ
|
|
Completed, /// Instruction has completed
|
|
ResultReady, /// Instruction has its result
|
|
CanIssue, /// Instruction can issue and execute
|
|
Issued, /// Instruction has issued
|
|
Executed, /// Instruction has executed
|
|
CanCommit, /// Instruction can commit
|
|
AtCommit, /// Instruction has reached commit
|
|
Committed, /// Instruction has committed
|
|
Squashed, /// Instruction is squashed
|
|
SquashedInIQ, /// Instruction is squashed in the IQ
|
|
SquashedInLSQ, /// Instruction is squashed in the LSQ
|
|
SquashedInROB, /// Instruction is squashed in the ROB
|
|
RecoverInst, /// Is a recover instruction
|
|
BlockingInst, /// Is a blocking instruction
|
|
ThreadsyncWait, /// Is a thread synchronization instruction
|
|
SerializeBefore, /// Needs to serialize on
|
|
/// instructions ahead of it
|
|
SerializeAfter, /// Needs to serialize instructions behind it
|
|
SerializeHandled, /// Serialization has been handled
|
|
NumStatus
|
|
};
|
|
|
|
/** The status of this BaseDynInst. Several bits can be set. */
|
|
std::bitset<NumStatus> status;
|
|
|
|
/** The thread this instruction is from. */
|
|
ThreadID threadNumber;
|
|
|
|
/** data address space ID, for loads & stores. */
|
|
short asid;
|
|
|
|
/** How many source registers are ready. */
|
|
unsigned readyRegs;
|
|
|
|
/** Pointer to the Impl's CPU object. */
|
|
ImplCPU *cpu;
|
|
|
|
/** Pointer to the thread state. */
|
|
ImplState *thread;
|
|
|
|
/** The kind of fault this instruction has generated. */
|
|
Fault fault;
|
|
|
|
/** Pointer to the data for the memory access. */
|
|
uint8_t *memData;
|
|
|
|
/** The effective virtual address (lds & stores only). */
|
|
Addr effAddr;
|
|
|
|
/** Is the effective virtual address valid. */
|
|
bool effAddrValid;
|
|
|
|
/** The effective physical address. */
|
|
Addr physEffAddr;
|
|
|
|
/** Effective virtual address for a copy source. */
|
|
Addr copySrcEffAddr;
|
|
|
|
/** Effective physical address for a copy source. */
|
|
Addr copySrcPhysEffAddr;
|
|
|
|
/** The memory request flags (from translation). */
|
|
unsigned memReqFlags;
|
|
|
|
union Result {
|
|
uint64_t integer;
|
|
// float fp;
|
|
double dbl;
|
|
};
|
|
|
|
/** The result of the instruction; assumes for now that there's only one
|
|
* destination register.
|
|
*/
|
|
Result instResult;
|
|
|
|
/** Records changes to result? */
|
|
bool recordResult;
|
|
|
|
/** PC of this instruction. */
|
|
Addr PC;
|
|
|
|
/** Micro PC of this instruction. */
|
|
Addr microPC;
|
|
|
|
protected:
|
|
/** Next non-speculative PC. It is not filled in at fetch, but rather
|
|
* once the target of the branch is truly known (either decode or
|
|
* execute).
|
|
*/
|
|
Addr nextPC;
|
|
|
|
/** Next non-speculative NPC. Target PC for Mips or Sparc. */
|
|
Addr nextNPC;
|
|
|
|
/** Next non-speculative micro PC. */
|
|
Addr nextMicroPC;
|
|
|
|
/** Predicted next PC. */
|
|
Addr predPC;
|
|
|
|
/** Predicted next NPC. */
|
|
Addr predNPC;
|
|
|
|
/** Predicted next microPC */
|
|
Addr predMicroPC;
|
|
|
|
/** If this is a branch that was predicted taken */
|
|
bool predTaken;
|
|
|
|
public:
|
|
|
|
#ifdef DEBUG
|
|
void dumpSNList();
|
|
#endif
|
|
|
|
/** Whether or not the source register is ready.
|
|
* @todo: Not sure this should be here vs the derived class.
|
|
*/
|
|
bool _readySrcRegIdx[MaxInstSrcRegs];
|
|
|
|
protected:
|
|
/** Flattened register index of the destination registers of this
|
|
* instruction.
|
|
*/
|
|
TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
|
|
|
|
/** Flattened register index of the source registers of this
|
|
* instruction.
|
|
*/
|
|
TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
|
|
|
|
/** Physical register index of the destination registers of this
|
|
* instruction.
|
|
*/
|
|
PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
|
|
|
|
/** Physical register index of the source registers of this
|
|
* instruction.
|
|
*/
|
|
PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
|
|
|
|
/** Physical register index of the previous producers of the
|
|
* architected destinations.
|
|
*/
|
|
PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
|
|
|
|
public:
|
|
|
|
/** Returns the physical register index of the i'th destination
|
|
* register.
|
|
*/
|
|
PhysRegIndex renamedDestRegIdx(int idx) const
|
|
{
|
|
return _destRegIdx[idx];
|
|
}
|
|
|
|
/** Returns the physical register index of the i'th source register. */
|
|
PhysRegIndex renamedSrcRegIdx(int idx) const
|
|
{
|
|
return _srcRegIdx[idx];
|
|
}
|
|
|
|
/** Returns the flattened register index of the i'th destination
|
|
* register.
|
|
*/
|
|
TheISA::RegIndex flattenedDestRegIdx(int idx) const
|
|
{
|
|
return _flatDestRegIdx[idx];
|
|
}
|
|
|
|
/** Returns the flattened register index of the i'th source register */
|
|
TheISA::RegIndex flattenedSrcRegIdx(int idx) const
|
|
{
|
|
return _flatSrcRegIdx[idx];
|
|
}
|
|
|
|
/** Returns the physical register index of the previous physical register
|
|
* that remapped to the same logical register index.
|
|
*/
|
|
PhysRegIndex prevDestRegIdx(int idx) const
|
|
{
|
|
return _prevDestRegIdx[idx];
|
|
}
|
|
|
|
/** Renames a destination register to a physical register. Also records
|
|
* the previous physical register that the logical register mapped to.
|
|
*/
|
|
void renameDestReg(int idx,
|
|
PhysRegIndex renamed_dest,
|
|
PhysRegIndex previous_rename)
|
|
{
|
|
_destRegIdx[idx] = renamed_dest;
|
|
_prevDestRegIdx[idx] = previous_rename;
|
|
}
|
|
|
|
/** Renames a source logical register to the physical register which
|
|
* has/will produce that logical register's result.
|
|
* @todo: add in whether or not the source register is ready.
|
|
*/
|
|
void renameSrcReg(int idx, PhysRegIndex renamed_src)
|
|
{
|
|
_srcRegIdx[idx] = renamed_src;
|
|
}
|
|
|
|
/** Flattens a source architectural register index into a logical index.
|
|
*/
|
|
void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
|
|
{
|
|
_flatSrcRegIdx[idx] = flattened_src;
|
|
}
|
|
|
|
/** Flattens a destination architectural register index into a logical
|
|
* index.
|
|
*/
|
|
void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
|
|
{
|
|
_flatDestRegIdx[idx] = flattened_dest;
|
|
}
|
|
/** BaseDynInst constructor given a binary instruction.
|
|
* @param staticInst A StaticInstPtr to the underlying instruction.
|
|
* @param PC The PC of the instruction.
|
|
* @param pred_PC The predicted next PC.
|
|
* @param pred_NPC The predicted next NPC.
|
|
* @param seq_num The sequence number of the instruction.
|
|
* @param cpu Pointer to the instruction's CPU.
|
|
*/
|
|
BaseDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
|
|
Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
|
|
InstSeqNum seq_num, ImplCPU *cpu);
|
|
|
|
/** BaseDynInst constructor given a binary instruction.
|
|
* @param inst The binary instruction.
|
|
* @param PC The PC of the instruction.
|
|
* @param pred_PC The predicted next PC.
|
|
* @param pred_NPC The predicted next NPC.
|
|
* @param seq_num The sequence number of the instruction.
|
|
* @param cpu Pointer to the instruction's CPU.
|
|
*/
|
|
BaseDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
|
|
Addr pred_PC, Addr pred_NPC, Addr pred_MicroPC,
|
|
InstSeqNum seq_num, ImplCPU *cpu);
|
|
|
|
/** BaseDynInst constructor given a StaticInst pointer.
|
|
* @param _staticInst The StaticInst for this BaseDynInst.
|
|
*/
|
|
BaseDynInst(StaticInstPtr &_staticInst);
|
|
|
|
/** BaseDynInst destructor. */
|
|
~BaseDynInst();
|
|
|
|
private:
|
|
/** Function to initialize variables in the constructors. */
|
|
void initVars();
|
|
|
|
public:
|
|
/** Dumps out contents of this BaseDynInst. */
|
|
void dump();
|
|
|
|
/** Dumps out contents of this BaseDynInst into given string. */
|
|
void dump(std::string &outstring);
|
|
|
|
/** Read this CPU's ID. */
|
|
int cpuId() { return cpu->cpuId(); }
|
|
|
|
/** Read this context's system-wide ID **/
|
|
int contextId() { return thread->contextId(); }
|
|
|
|
/** Returns the fault type. */
|
|
Fault getFault() { return fault; }
|
|
|
|
/** Checks whether or not this instruction has had its branch target
|
|
* calculated yet. For now it is not utilized and is hacked to be
|
|
* always false.
|
|
* @todo: Actually use this instruction.
|
|
*/
|
|
bool doneTargCalc() { return false; }
|
|
|
|
/** Returns the next PC. This could be the speculative next PC if it is
|
|
* called prior to the actual branch target being calculated.
|
|
*/
|
|
Addr readNextPC() { return nextPC; }
|
|
|
|
/** Returns the next NPC. This could be the speculative next NPC if it is
|
|
* called prior to the actual branch target being calculated.
|
|
*/
|
|
Addr readNextNPC()
|
|
{
|
|
#if ISA_HAS_DELAY_SLOT
|
|
return nextNPC;
|
|
#else
|
|
return nextPC + sizeof(TheISA::MachInst);
|
|
#endif
|
|
}
|
|
|
|
Addr readNextMicroPC()
|
|
{
|
|
return nextMicroPC;
|
|
}
|
|
|
|
/** Set the predicted target of this current instruction. */
|
|
void setPredTarg(Addr predicted_PC, Addr predicted_NPC,
|
|
Addr predicted_MicroPC)
|
|
{
|
|
predPC = predicted_PC;
|
|
predNPC = predicted_NPC;
|
|
predMicroPC = predicted_MicroPC;
|
|
}
|
|
|
|
/** Returns the predicted PC immediately after the branch. */
|
|
Addr readPredPC() { return predPC; }
|
|
|
|
/** Returns the predicted PC two instructions after the branch */
|
|
Addr readPredNPC() { return predNPC; }
|
|
|
|
/** Returns the predicted micro PC after the branch */
|
|
Addr readPredMicroPC() { return predMicroPC; }
|
|
|
|
/** Returns whether the instruction was predicted taken or not. */
|
|
bool readPredTaken()
|
|
{
|
|
return predTaken;
|
|
}
|
|
|
|
void setPredTaken(bool predicted_taken)
|
|
{
|
|
predTaken = predicted_taken;
|
|
}
|
|
|
|
/** Returns whether the instruction mispredicted. */
|
|
bool mispredicted()
|
|
{
|
|
return readPredPC() != readNextPC() ||
|
|
readPredNPC() != readNextNPC() ||
|
|
readPredMicroPC() != readNextMicroPC();
|
|
}
|
|
|
|
//
|
|
// Instruction types. Forward checks to StaticInst object.
|
|
//
|
|
bool isNop() const { return staticInst->isNop(); }
|
|
bool isMemRef() const { return staticInst->isMemRef(); }
|
|
bool isLoad() const { return staticInst->isLoad(); }
|
|
bool isStore() const { return staticInst->isStore(); }
|
|
bool isStoreConditional() const
|
|
{ return staticInst->isStoreConditional(); }
|
|
bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
|
|
bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
|
|
bool isCopy() const { return staticInst->isCopy(); }
|
|
bool isInteger() const { return staticInst->isInteger(); }
|
|
bool isFloating() const { return staticInst->isFloating(); }
|
|
bool isControl() const { return staticInst->isControl(); }
|
|
bool isCall() const { return staticInst->isCall(); }
|
|
bool isReturn() const { return staticInst->isReturn(); }
|
|
bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
|
|
bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
|
|
bool isCondCtrl() const { return staticInst->isCondCtrl(); }
|
|
bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
|
|
bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
|
|
bool isThreadSync() const { return staticInst->isThreadSync(); }
|
|
bool isSerializing() const { return staticInst->isSerializing(); }
|
|
bool isSerializeBefore() const
|
|
{ return staticInst->isSerializeBefore() || status[SerializeBefore]; }
|
|
bool isSerializeAfter() const
|
|
{ return staticInst->isSerializeAfter() || status[SerializeAfter]; }
|
|
bool isMemBarrier() const { return staticInst->isMemBarrier(); }
|
|
bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
|
|
bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
|
|
bool isQuiesce() const { return staticInst->isQuiesce(); }
|
|
bool isIprAccess() const { return staticInst->isIprAccess(); }
|
|
bool isUnverifiable() const { return staticInst->isUnverifiable(); }
|
|
bool isSyscall() const { return staticInst->isSyscall(); }
|
|
bool isMacroop() const { return staticInst->isMacroop(); }
|
|
bool isMicroop() const { return staticInst->isMicroop(); }
|
|
bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
|
|
bool isLastMicroop() const { return staticInst->isLastMicroop(); }
|
|
bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
|
|
bool isMicroBranch() const { return staticInst->isMicroBranch(); }
|
|
|
|
/** Temporarily sets this instruction as a serialize before instruction. */
|
|
void setSerializeBefore() { status.set(SerializeBefore); }
|
|
|
|
/** Clears the serializeBefore part of this instruction. */
|
|
void clearSerializeBefore() { status.reset(SerializeBefore); }
|
|
|
|
/** Checks if this serializeBefore is only temporarily set. */
|
|
bool isTempSerializeBefore() { return status[SerializeBefore]; }
|
|
|
|
/** Temporarily sets this instruction as a serialize after instruction. */
|
|
void setSerializeAfter() { status.set(SerializeAfter); }
|
|
|
|
/** Clears the serializeAfter part of this instruction.*/
|
|
void clearSerializeAfter() { status.reset(SerializeAfter); }
|
|
|
|
/** Checks if this serializeAfter is only temporarily set. */
|
|
bool isTempSerializeAfter() { return status[SerializeAfter]; }
|
|
|
|
/** Sets the serialization part of this instruction as handled. */
|
|
void setSerializeHandled() { status.set(SerializeHandled); }
|
|
|
|
/** Checks if the serialization part of this instruction has been
|
|
* handled. This does not apply to the temporary serializing
|
|
* state; it only applies to this instruction's own permanent
|
|
* serializing state.
|
|
*/
|
|
bool isSerializeHandled() { return status[SerializeHandled]; }
|
|
|
|
/** Returns the opclass of this instruction. */
|
|
OpClass opClass() const { return staticInst->opClass(); }
|
|
|
|
/** Returns the branch target address. */
|
|
Addr branchTarget() const { return staticInst->branchTarget(PC); }
|
|
|
|
/** Returns the number of source registers. */
|
|
int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
|
|
|
|
/** Returns the number of destination registers. */
|
|
int8_t numDestRegs() const { return staticInst->numDestRegs(); }
|
|
|
|
// the following are used to track physical register usage
|
|
// for machines with separate int & FP reg files
|
|
int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
|
|
int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
|
|
|
|
/** Returns the logical register index of the i'th destination register. */
|
|
RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
|
|
|
|
/** Returns the logical register index of the i'th source register. */
|
|
RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
|
|
|
|
/** Returns the result of an integer instruction. */
|
|
uint64_t readIntResult() { return instResult.integer; }
|
|
|
|
/** Returns the result of a floating point instruction. */
|
|
float readFloatResult() { return (float)instResult.dbl; }
|
|
|
|
/** Returns the result of a floating point (double) instruction. */
|
|
double readDoubleResult() { return instResult.dbl; }
|
|
|
|
/** Records an integer register being set to a value. */
|
|
void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
|
|
{
|
|
if (recordResult)
|
|
instResult.integer = val;
|
|
}
|
|
|
|
/** Records an fp register being set to a value. */
|
|
void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
|
|
int width)
|
|
{
|
|
if (recordResult) {
|
|
if (width == 32)
|
|
instResult.dbl = (double)val;
|
|
else if (width == 64)
|
|
instResult.dbl = val;
|
|
else
|
|
panic("Unsupported width!");
|
|
}
|
|
}
|
|
|
|
/** Records an fp register being set to a value. */
|
|
void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
|
|
{
|
|
if (recordResult)
|
|
instResult.dbl = (double)val;
|
|
}
|
|
|
|
/** Records an fp register being set to an integer value. */
|
|
void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
|
|
int width)
|
|
{
|
|
if (recordResult)
|
|
instResult.integer = val;
|
|
}
|
|
|
|
/** Records an fp register being set to an integer value. */
|
|
void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
|
|
{
|
|
if (recordResult)
|
|
instResult.integer = val;
|
|
}
|
|
|
|
/** Records that one of the source registers is ready. */
|
|
void markSrcRegReady();
|
|
|
|
/** Marks a specific register as ready. */
|
|
void markSrcRegReady(RegIndex src_idx);
|
|
|
|
/** Returns if a source register is ready. */
|
|
bool isReadySrcRegIdx(int idx) const
|
|
{
|
|
return this->_readySrcRegIdx[idx];
|
|
}
|
|
|
|
/** Sets this instruction as completed. */
|
|
void setCompleted() { status.set(Completed); }
|
|
|
|
/** Returns whether or not this instruction is completed. */
|
|
bool isCompleted() const { return status[Completed]; }
|
|
|
|
/** Marks the result as ready. */
|
|
void setResultReady() { status.set(ResultReady); }
|
|
|
|
/** Returns whether or not the result is ready. */
|
|
bool isResultReady() const { return status[ResultReady]; }
|
|
|
|
/** Sets this instruction as ready to issue. */
|
|
void setCanIssue() { status.set(CanIssue); }
|
|
|
|
/** Returns whether or not this instruction is ready to issue. */
|
|
bool readyToIssue() const { return status[CanIssue]; }
|
|
|
|
/** Clears this instruction being able to issue. */
|
|
void clearCanIssue() { status.reset(CanIssue); }
|
|
|
|
/** Sets this instruction as issued from the IQ. */
|
|
void setIssued() { status.set(Issued); }
|
|
|
|
/** Returns whether or not this instruction has issued. */
|
|
bool isIssued() const { return status[Issued]; }
|
|
|
|
/** Clears this instruction as being issued. */
|
|
void clearIssued() { status.reset(Issued); }
|
|
|
|
/** Sets this instruction as executed. */
|
|
void setExecuted() { status.set(Executed); }
|
|
|
|
/** Returns whether or not this instruction has executed. */
|
|
bool isExecuted() const { return status[Executed]; }
|
|
|
|
/** Sets this instruction as ready to commit. */
|
|
void setCanCommit() { status.set(CanCommit); }
|
|
|
|
/** Clears this instruction as being ready to commit. */
|
|
void clearCanCommit() { status.reset(CanCommit); }
|
|
|
|
/** Returns whether or not this instruction is ready to commit. */
|
|
bool readyToCommit() const { return status[CanCommit]; }
|
|
|
|
void setAtCommit() { status.set(AtCommit); }
|
|
|
|
bool isAtCommit() { return status[AtCommit]; }
|
|
|
|
/** Sets this instruction as committed. */
|
|
void setCommitted() { status.set(Committed); }
|
|
|
|
/** Returns whether or not this instruction is committed. */
|
|
bool isCommitted() const { return status[Committed]; }
|
|
|
|
/** Sets this instruction as squashed. */
|
|
void setSquashed() { status.set(Squashed); }
|
|
|
|
/** Returns whether or not this instruction is squashed. */
|
|
bool isSquashed() const { return status[Squashed]; }
|
|
|
|
//Instruction Queue Entry
|
|
//-----------------------
|
|
/** Sets this instruction as a entry the IQ. */
|
|
void setInIQ() { status.set(IqEntry); }
|
|
|
|
/** Sets this instruction as a entry the IQ. */
|
|
void clearInIQ() { status.reset(IqEntry); }
|
|
|
|
/** Returns whether or not this instruction has issued. */
|
|
bool isInIQ() const { return status[IqEntry]; }
|
|
|
|
/** Sets this instruction as squashed in the IQ. */
|
|
void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
|
|
|
|
/** Returns whether or not this instruction is squashed in the IQ. */
|
|
bool isSquashedInIQ() const { return status[SquashedInIQ]; }
|
|
|
|
|
|
//Load / Store Queue Functions
|
|
//-----------------------
|
|
/** Sets this instruction as a entry the LSQ. */
|
|
void setInLSQ() { status.set(LsqEntry); }
|
|
|
|
/** Sets this instruction as a entry the LSQ. */
|
|
void removeInLSQ() { status.reset(LsqEntry); }
|
|
|
|
/** Returns whether or not this instruction is in the LSQ. */
|
|
bool isInLSQ() const { return status[LsqEntry]; }
|
|
|
|
/** Sets this instruction as squashed in the LSQ. */
|
|
void setSquashedInLSQ() { status.set(SquashedInLSQ);}
|
|
|
|
/** Returns whether or not this instruction is squashed in the LSQ. */
|
|
bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
|
|
|
|
|
|
//Reorder Buffer Functions
|
|
//-----------------------
|
|
/** Sets this instruction as a entry the ROB. */
|
|
void setInROB() { status.set(RobEntry); }
|
|
|
|
/** Sets this instruction as a entry the ROB. */
|
|
void clearInROB() { status.reset(RobEntry); }
|
|
|
|
/** Returns whether or not this instruction is in the ROB. */
|
|
bool isInROB() const { return status[RobEntry]; }
|
|
|
|
/** Sets this instruction as squashed in the ROB. */
|
|
void setSquashedInROB() { status.set(SquashedInROB); }
|
|
|
|
/** Returns whether or not this instruction is squashed in the ROB. */
|
|
bool isSquashedInROB() const { return status[SquashedInROB]; }
|
|
|
|
/** Read the PC of this instruction. */
|
|
const Addr readPC() const { return PC; }
|
|
|
|
/**Read the micro PC of this instruction. */
|
|
const Addr readMicroPC() const { return microPC; }
|
|
|
|
/** Set the next PC of this instruction (its actual target). */
|
|
void setNextPC(Addr val)
|
|
{
|
|
nextPC = val;
|
|
}
|
|
|
|
/** Set the next NPC of this instruction (the target in Mips or Sparc).*/
|
|
void setNextNPC(Addr val)
|
|
{
|
|
#if ISA_HAS_DELAY_SLOT
|
|
nextNPC = val;
|
|
#endif
|
|
}
|
|
|
|
void setNextMicroPC(Addr val)
|
|
{
|
|
nextMicroPC = val;
|
|
}
|
|
|
|
/** Sets the ASID. */
|
|
void setASID(short addr_space_id) { asid = addr_space_id; }
|
|
|
|
/** Sets the thread id. */
|
|
void setTid(ThreadID tid) { threadNumber = tid; }
|
|
|
|
/** Sets the pointer to the thread state. */
|
|
void setThreadState(ImplState *state) { thread = state; }
|
|
|
|
/** Returns the thread context. */
|
|
ThreadContext *tcBase() { return thread->getTC(); }
|
|
|
|
private:
|
|
/** Instruction effective address.
|
|
* @todo: Consider if this is necessary or not.
|
|
*/
|
|
Addr instEffAddr;
|
|
|
|
/** Whether or not the effective address calculation is completed.
|
|
* @todo: Consider if this is necessary or not.
|
|
*/
|
|
bool eaCalcDone;
|
|
|
|
/** Is this instruction's memory access uncacheable. */
|
|
bool isUncacheable;
|
|
|
|
/** Has this instruction generated a memory request. */
|
|
bool reqMade;
|
|
|
|
public:
|
|
/** Sets the effective address. */
|
|
void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
|
|
|
|
/** Returns the effective address. */
|
|
const Addr &getEA() const { return instEffAddr; }
|
|
|
|
/** Returns whether or not the eff. addr. calculation has been completed. */
|
|
bool doneEACalc() { return eaCalcDone; }
|
|
|
|
/** Returns whether or not the eff. addr. source registers are ready. */
|
|
bool eaSrcsReady();
|
|
|
|
/** Whether or not the memory operation is done. */
|
|
bool memOpDone;
|
|
|
|
/** Is this instruction's memory access uncacheable. */
|
|
bool uncacheable() { return isUncacheable; }
|
|
|
|
/** Has this instruction generated a memory request. */
|
|
bool hasRequest() { return reqMade; }
|
|
|
|
public:
|
|
/** Load queue index. */
|
|
int16_t lqIdx;
|
|
|
|
/** Store queue index. */
|
|
int16_t sqIdx;
|
|
|
|
/** Iterator pointing to this BaseDynInst in the list of all insts. */
|
|
ListIt instListIt;
|
|
|
|
/** Returns iterator to this instruction in the list of all insts. */
|
|
ListIt &getInstListIt() { return instListIt; }
|
|
|
|
/** Sets iterator for this instruction in the list of all insts. */
|
|
void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
|
|
|
|
public:
|
|
/** Returns the number of consecutive store conditional failures. */
|
|
unsigned readStCondFailures()
|
|
{ return thread->storeCondFailures; }
|
|
|
|
/** Sets the number of consecutive store conditional failures. */
|
|
void setStCondFailures(unsigned sc_failures)
|
|
{ thread->storeCondFailures = sc_failures; }
|
|
};
|
|
|
|
template<class Impl>
|
|
template<class T>
|
|
inline Fault
|
|
BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
|
|
{
|
|
reqMade = true;
|
|
Request *req = new Request(asid, addr, sizeof(T), flags, this->PC,
|
|
thread->contextId(), threadNumber);
|
|
|
|
Request *sreqLow = NULL;
|
|
Request *sreqHigh = NULL;
|
|
|
|
// Only split the request if the ISA supports unaligned accesses.
|
|
if (TheISA::HasUnalignedMemAcc) {
|
|
splitRequest(req, sreqLow, sreqHigh);
|
|
}
|
|
initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
|
|
|
|
if (fault == NoFault) {
|
|
effAddr = req->getVaddr();
|
|
effAddrValid = true;
|
|
fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
|
|
} else {
|
|
|
|
// Return a fixed value to keep simulation deterministic even
|
|
// along misspeculated paths.
|
|
data = (T)-1;
|
|
|
|
// Commit will have to clean up whatever happened. Set this
|
|
// instruction as executed.
|
|
this->setExecuted();
|
|
}
|
|
|
|
if (traceData) {
|
|
traceData->setAddr(addr);
|
|
traceData->setData(data);
|
|
}
|
|
|
|
return fault;
|
|
}
|
|
|
|
template<class Impl>
|
|
template<class T>
|
|
inline Fault
|
|
BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
|
|
{
|
|
if (traceData) {
|
|
traceData->setAddr(addr);
|
|
traceData->setData(data);
|
|
}
|
|
|
|
reqMade = true;
|
|
Request *req = new Request(asid, addr, sizeof(T), flags, this->PC,
|
|
thread->contextId(), threadNumber);
|
|
|
|
Request *sreqLow = NULL;
|
|
Request *sreqHigh = NULL;
|
|
|
|
// Only split the request if the ISA supports unaligned accesses.
|
|
if (TheISA::HasUnalignedMemAcc) {
|
|
splitRequest(req, sreqLow, sreqHigh);
|
|
}
|
|
initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
|
|
|
|
if (fault == NoFault) {
|
|
effAddr = req->getVaddr();
|
|
effAddrValid = true;
|
|
fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
|
|
}
|
|
|
|
return fault;
|
|
}
|
|
|
|
template<class Impl>
|
|
inline void
|
|
BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
|
|
RequestPtr &sreqHigh)
|
|
{
|
|
// Check to see if the request crosses the next level block boundary.
|
|
unsigned block_size = cpu->getDcachePort()->peerBlockSize();
|
|
Addr addr = req->getVaddr();
|
|
Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
|
|
assert(split_addr <= addr || split_addr - addr < block_size);
|
|
|
|
// Spans two blocks.
|
|
if (split_addr > addr) {
|
|
req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
|
|
}
|
|
}
|
|
|
|
template<class Impl>
|
|
inline void
|
|
BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
|
|
RequestPtr sreqHigh, uint64_t *res,
|
|
BaseTLB::Mode mode)
|
|
{
|
|
if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
|
|
WholeTranslationState *state =
|
|
new WholeTranslationState(req, NULL, res, mode);
|
|
|
|
// One translation if the request isn't split.
|
|
DataTranslation<BaseDynInst<Impl> > *trans =
|
|
new DataTranslation<BaseDynInst<Impl> >(this, state);
|
|
cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
|
|
} else {
|
|
WholeTranslationState *state =
|
|
new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
|
|
|
|
// Two translations when the request is split.
|
|
DataTranslation<BaseDynInst<Impl> > *stransLow =
|
|
new DataTranslation<BaseDynInst<Impl> >(this, state, 0);
|
|
DataTranslation<BaseDynInst<Impl> > *stransHigh =
|
|
new DataTranslation<BaseDynInst<Impl> >(this, state, 1);
|
|
|
|
cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
|
|
cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
|
|
}
|
|
}
|
|
|
|
template<class Impl>
|
|
inline void
|
|
BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
|
|
{
|
|
fault = state->getFault();
|
|
|
|
if (state->isUncacheable())
|
|
isUncacheable = true;
|
|
|
|
if (fault == NoFault) {
|
|
physEffAddr = state->getPaddr();
|
|
memReqFlags = state->getFlags();
|
|
|
|
if (state->mainReq->isCondSwap()) {
|
|
assert(state->res);
|
|
state->mainReq->setExtraData(*state->res);
|
|
}
|
|
|
|
} else {
|
|
state->deleteReqs();
|
|
}
|
|
delete state;
|
|
}
|
|
|
|
#endif // __CPU_BASE_DYN_INST_HH__
|