No description
3fea59e162
This patch moves send/recvTiming and send/recvTimingSnoop from the Port base class to the MasterPort and SlavePort, and also splits them into separate member functions for requests and responses: send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq, send/recvTimingSnoopResp. A master port sends requests and receives responses, and also receives snoop requests and sends snoop responses. A slave port has the reciprocal behaviour as it receives requests and sends responses, and sends snoop requests and receives snoop responses. For all MemObjects that have only master ports or slave ports (but not both), e.g. a CPU, or a PIO device, this patch merely adds more clarity to what kind of access is taking place. For example, a CPU port used to call sendTiming, and will now call sendTimingReq. Similarly, a response previously came back through recvTiming, which is now recvTimingResp. For the modules that have both master and slave ports, e.g. the bus, the behaviour was previously relying on branches based on pkt->isRequest(), and this is now replaced with a direct call to the apprioriate member function depending on the type of access. Please note that send/recvRetry is still shared by all the timing accessors and remains in the Port base class for now (to maintain the current bus functionality and avoid changing the statistics of all regressions). The packet queue is split into a MasterPort and SlavePort version to facilitate the use of the new timing accessors. All uses of the PacketQueue are updated accordingly. With this patch, the type of packet (request or response) is now well defined for each type of access, and asserts on pkt->isRequest() and pkt->isResponse() are now moved to the appropriate send member functions. It is also worth noting that sendTimingSnoopReq no longer returns a boolean, as the semantics do not alow snoop requests to be rejected or stalled. All these assumptions are now excplicitly part of the port interface itself. |
||
---|---|---|
build_opts | ||
configs | ||
ext | ||
src | ||
system | ||
tests | ||
util | ||
.hgignore | ||
.hgtags | ||
COPYING | ||
LICENSE | ||
README | ||
SConstruct |
This is the M5 simulator. For detailed information about building the simulator and getting started please refer to http://www.m5sim.org. Specific pages of interest are: http://www.m5sim.org/wiki/index.php/Compiling_M5 http://www.m5sim.org/wiki/index.php/Running_M5 Short version: 1. If you don't have SCons version 0.98.1 or newer, get it from http://wwww.scons.org. 2. If you don't have SWIG version 1.3.31 or newer, get it from http://wwww.swig.org. 3. Make sure you also have gcc version 3.4.6 or newer, Python 2.4 or newer (the dev version with header files), zlib, and the m4 preprocessor. 4. In this directory, type 'scons build/ALPHA_SE/tests/debug/quick'. This will build the debug version of the m5 binary (m5.debug) for the Alpha syscall emulation target, and run the quick regression tests on it. If you have questions, please send mail to m5-users@m5sim.org WHAT'S INCLUDED (AND NOT) ------------------------- The basic source release includes these subdirectories: - m5: - configs: simulation configuration scripts - ext: less-common external packages needed to build m5 - src: source code of the m5 simulator - system: source for some optional system software for simulated systems - tests: regression tests - util: useful utility programs and files To run full-system simulations, you will need compiled system firmware (console and PALcode for Alpha), kernel binaries and one or more disk images. These files for Alpha are collected in a separate archive, m5_system.tar.bz2. This file can he downloaded separately. Depending on the ISA used, M5 may support Linux 2.4/2.6, FreeBSD, and the proprietary Compaq/HP Tru64 version of Unix. We are able to distribute Linux and FreeBSD bootdisks, but we are unable to distribute bootable disk images of Tru64 Unix. If you have a Tru64 license and are interested in obtaining disk images, contact us at m5-users@m5sim.org