No description
Find a file
Andreas Hansson 3fea59e162 MEM: Separate requests and responses for timing accesses
This patch moves send/recvTiming and send/recvTimingSnoop from the
Port base class to the MasterPort and SlavePort, and also splits them
into separate member functions for requests and responses:
send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq,
send/recvTimingSnoopResp. A master port sends requests and receives
responses, and also receives snoop requests and sends snoop
responses. A slave port has the reciprocal behaviour as it receives
requests and sends responses, and sends snoop requests and receives
snoop responses.

For all MemObjects that have only master ports or slave ports (but not
both), e.g. a CPU, or a PIO device, this patch merely adds more
clarity to what kind of access is taking place. For example, a CPU
port used to call sendTiming, and will now call
sendTimingReq. Similarly, a response previously came back through
recvTiming, which is now recvTimingResp. For the modules that have
both master and slave ports, e.g. the bus, the behaviour was
previously relying on branches based on pkt->isRequest(), and this is
now replaced with a direct call to the apprioriate member function
depending on the type of access. Please note that send/recvRetry is
still shared by all the timing accessors and remains in the Port base
class for now (to maintain the current bus functionality and avoid
changing the statistics of all regressions).

The packet queue is split into a MasterPort and SlavePort version to
facilitate the use of the new timing accessors. All uses of the
PacketQueue are updated accordingly.

With this patch, the type of packet (request or response) is now well
defined for each type of access, and asserts on pkt->isRequest() and
pkt->isResponse() are now moved to the appropriate send member
functions. It is also worth noting that sendTimingSnoopReq no longer
returns a boolean, as the semantics do not alow snoop requests to be
rejected or stalled. All these assumptions are now excplicitly part of
the port interface itself.
2012-05-01 13:40:42 -04:00
build_opts Regression: Add a test for x86 timing full system ruby simulation 2012-04-25 22:43:36 -05:00
configs SE Config: Changed se.py to support multithreaded mode 2012-04-17 16:12:41 -05:00
ext clang/gcc: Fix compilation issues with clang 3.0 and gcc 4.6 2012-04-14 05:43:31 -04:00
src MEM: Separate requests and responses for timing accesses 2012-05-01 13:40:42 -04:00
system ARM: Add support for Versatile Express extended memory map 2012-03-01 17:26:31 -06:00
tests Regression: Stats update for X86 Ruby FS test 2012-04-30 03:47:22 -05:00
util util/regress: Add the missing comma in the list of builds 2012-04-26 20:28:45 -05:00
.hgignore .hgignore: added src/doxygen 2010-07-27 20:00:38 -07:00
.hgtags Added tag Calvin_Submission for changeset 5de565c4b7bd 2009-11-18 11:55:42 -06:00
COPYING copyright: Add code for finding all copyright blocks and create a COPYING file 2011-06-02 17:36:07 -07:00
LICENSE copyright: Add code for finding all copyright blocks and create a COPYING file 2011-06-02 17:36:07 -07:00
README Info: Clean up some info files. 2011-02-14 21:36:37 -08:00
SConstruct scons: update minimum SWIG version to 1.3.34 2012-04-23 09:25:16 -07:00

This is the M5 simulator.

For detailed information about building the simulator and getting
started please refer to http://www.m5sim.org.

Specific pages of interest are:
http://www.m5sim.org/wiki/index.php/Compiling_M5
http://www.m5sim.org/wiki/index.php/Running_M5

Short version:

1. If you don't have SCons version 0.98.1 or newer, get it from
http://wwww.scons.org.

2. If you don't have SWIG version 1.3.31 or newer, get it from
http://wwww.swig.org.

3. Make sure you also have gcc version 3.4.6 or newer, Python 2.4 or newer
(the dev version with header files), zlib, and the m4 preprocessor.

4. In this directory, type 'scons build/ALPHA_SE/tests/debug/quick'.  This
will build the debug version of the m5 binary (m5.debug) for the Alpha
syscall emulation target, and run the quick regression tests on it.

If you have questions, please send mail to m5-users@m5sim.org

WHAT'S INCLUDED (AND NOT)
-------------------------

The basic source release includes these subdirectories:
 - m5:
   - configs: simulation configuration scripts
   - ext: less-common external packages needed to build m5
   - src: source code of the m5 simulator
   - system: source for some optional system software for simulated systems
   - tests: regression tests
   - util: useful utility programs and files

To run full-system simulations, you will need compiled system firmware
(console and PALcode for Alpha), kernel binaries and one or more disk images. 
These files for Alpha are collected in a separate archive, m5_system.tar.bz2.
This file can he downloaded separately.

Depending on the ISA used, M5 may support Linux 2.4/2.6, FreeBSD, and the
proprietary Compaq/HP Tru64 version of Unix. We are able to distribute Linux
and FreeBSD bootdisks, but we are unable to distribute bootable disk images of
Tru64 Unix. If you have a Tru64 license and are interested in
obtaining disk images, contact us at m5-users@m5sim.org