gem5/kern/linux/linux_system.cc
Andrew Schultz c82113d022 Load local kernel symbols, and set aic7xxx_no_reset to prevent an initial
(very painful) bus reset from occuring

base/loader/elf_object.cc:
    Fixed to allow proper loading of local symbols

--HG--
extra : convert_revision : 5c9a1f4d7b5748a1c8cabdfd67763c21f988f8fd
2004-02-21 20:31:08 -05:00

746 lines
26 KiB
C++

/*
* Copyright (c) 2003 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "base/loader/aout_object.hh"
#include "base/loader/elf_object.hh"
#include "base/loader/object_file.hh"
#include "base/loader/symtab.hh"
#include "base/remote_gdb.hh"
#include "base/trace.hh"
#include "cpu/exec_context.hh"
#include "cpu/base_cpu.hh"
#include "kern/linux/linux_events.hh"
#include "kern/linux/linux_system.hh"
#include "mem/functional_mem/memory_control.hh"
#include "mem/functional_mem/physical_memory.hh"
#include "sim/builder.hh"
#include "dev/platform.hh"
#include "targetarch/isa_traits.hh"
#include "targetarch/vtophys.hh"
extern SymbolTable *debugSymbolTable;
//un-comment this to see the state of call stack when it changes.
//#define SW_DEBUG
using namespace std;
LinuxSystem::LinuxSystem(const string _name, const uint64_t _init_param,
MemoryController *_memCtrl, PhysicalMemory *_physmem,
const string &kernel_path, const string &console_path,
const string &palcode, const string &boot_osflags,
const string &bootloader_path, const bool _bin)
: System(_name, _init_param, _memCtrl, _physmem, _bin), bin(_bin)
{
kernelSymtab = new SymbolTable;
consoleSymtab = new SymbolTable;
bootloaderSymtab = new SymbolTable;
ObjectFile *kernel = createObjectFile(kernel_path);
if (kernel == NULL)
fatal("Could not load kernel file %s", kernel_path);
ObjectFile *console = createObjectFile(console_path);
if (console == NULL)
fatal("Could not load console file %s", console_path);
ObjectFile *bootloader = createObjectFile(bootloader_path);
if (bootloader == NULL)
fatal("Could not load bootloader file %s", bootloader_path);
if (!kernel->loadGlobalSymbols(kernelSymtab))
panic("could not load kernel symbols\n");
debugSymbolTable = kernelSymtab;
if (!kernel->loadLocalSymbols(kernelSymtab))
panic("could not load kernel local symbols\n");
if (!console->loadGlobalSymbols(consoleSymtab))
panic("could not load console symbols\n");
if (!bootloader->loadGlobalSymbols(bootloaderSymtab))
panic("could not load bootloader symbols\n");
// Load pal file
ObjectFile *pal = createObjectFile(palcode);
if (pal == NULL)
fatal("Could not load PALcode file %s", palcode);
pal->loadSections(physmem, true);
// Load console file
console->loadSections(physmem, true);
// Load kernel file
kernel->loadSections(physmem, true);
kernelStart = kernel->textBase();
kernelEnd = kernel->bssBase() + kernel->bssSize();
/* FIXME: entrypoint not in kernel, but in bootloader,
variable should be re-named appropriately */
kernelEntry = kernel->entryPoint();
DPRINTF(Loader, "Kernel start = %#x\n"
"Kernel end = %#x\n"
"Kernel entry = %#x\n",
kernelStart, kernelEnd, kernelEntry);
DPRINTF(Loader, "Kernel loaded...\n");
// Load bootloader file
bootloader->loadSections(physmem, true);
kernelEntry = bootloader->entryPoint();
kernelStart = bootloader->textBase();
DPRINTF(Loader, "Bootloader entry at %#x\n", kernelEntry);
#ifdef FS_MEASURE
//INSTRUMENTATION CODEGEN BEGIN ONE
if (bin == true) {
esIntrBin = new Statistics::MainBin(name() + " es_intr");
fnBins.insert(make_pair("es_intr", esIntrBin));
esRxeofBin = new Statistics::MainBin(name() + " es_rxeof");
fnBins.insert(make_pair("es_rxeof", esRxeofBin));
esNewbufBin = new Statistics::MainBin(name() + " es_newbuf");
fnBins.insert(make_pair("es_newbuf", esNewbufBin));
esDmaLoadBin = new Statistics::MainBin(name() + " es_dma_load");
fnBins.insert(make_pair("es_dma_load", esDmaLoadBin));
dmaMapLoadBin = new Statistics::MainBin(name() + " dma_map_load");
fnBins.insert(make_pair("dma_map_load", dmaMapLoadBin));
etherInputBin = new Statistics::MainBin(name() + " ether_input");
fnBins.insert(make_pair("ether_input", etherInputBin));
netisrInputBin = new Statistics::MainBin(name() + " netisr_input");
fnBins.insert(make_pair("netisr_input", netisrInputBin));
schednetisrIsrBin = new Statistics::MainBin(name() + " schednetisr_isr");
fnBins.insert(make_pair("schednetisr_isr", schednetisrIsrBin));
ipintrBin = new Statistics::MainBin(name() + " ipintr");
fnBins.insert(make_pair("ipintr", ipintrBin));
ipDooptionsBin = new Statistics::MainBin(name() + " ip_dooptions");
fnBins.insert(make_pair("ip_dooptions", ipDooptionsBin));
ipReassBin = new Statistics::MainBin(name() + " ip_reass");
fnBins.insert(make_pair("ip_reass", ipReassBin));
tcpInputBin = new Statistics::MainBin(name() + " tcp_input");
fnBins.insert(make_pair("tcp_input", tcpInputBin));
sbappendBin = new Statistics::MainBin(name() + " sbappend");
fnBins.insert(make_pair("sbappend", sbappendBin));
readBin = new Statistics::MainBin(name() + " read");
fnBins.insert(make_pair("read", readBin));
sooReadBin = new Statistics::MainBin(name() + " soo_read");
fnBins.insert(make_pair("soo_read", sooReadBin));
orecvBin = new Statistics::MainBin(name() + " orecv");
fnBins.insert(make_pair("orecv", orecvBin));
recvitBin = new Statistics::MainBin(name() + " recvit");
fnBins.insert(make_pair("recvit", recvitBin));
soreceiveBin = new Statistics::MainBin(name() + " soreceive");
fnBins.insert(make_pair("soreceive", soreceiveBin));
osendBin = new Statistics::MainBin(name() + " osend");
fnBins.insert(make_pair("osend", osendBin));
writeBin = new Statistics::MainBin(name() + " write");
fnBins.insert(make_pair("write", writeBin));
sooWriteBin = new Statistics::MainBin(name() + " soo_write");
fnBins.insert(make_pair("soo_write", sooWriteBin));
senditBin = new Statistics::MainBin(name() + " sendit");
fnBins.insert(make_pair("sendit", senditBin));
sosendBin = new Statistics::MainBin(name() + " sosend");
fnBins.insert(make_pair("sosend", sosendBin));
tcpSosendBin = new Statistics::MainBin(name() + " tcp_sosend");
fnBins.insert(make_pair("tcp_sosend", tcpSosendBin));
tcpOutputBin = new Statistics::MainBin(name() + " tcp_output");
fnBins.insert(make_pair("tcp_output", tcpOutputBin));
ipOutputBin = new Statistics::MainBin(name() + " ip_output");
fnBins.insert(make_pair("ip_output", ipOutputBin));
etherOutputBin = new Statistics::MainBin(name() + " ether_output");
fnBins.insert(make_pair("ether_output", etherOutputBin));
esStartBin = new Statistics::MainBin(name() + " es_start");
fnBins.insert(make_pair("es_start", esStartBin));
esTransmitBin = new Statistics::MainBin(name() + " es_transmit");
fnBins.insert(make_pair("es_transmit", esTransmitBin));
esTxeofBin = new Statistics::MainBin(name() + " es_txeof");
fnBins.insert(make_pair("es_txeof", esTxeofBin));
idleThreadBin = new Statistics::MainBin(name() + " idle_thread");
fnBins.insert(make_pair("idle_thread", idleThreadBin));
}
//INSTRUMENTATION CODEGEN END
#endif //FS_MEASURE
kernelPanicEvent = new BreakPCEvent(&pcEventQueue, "kernel panic");
consolePanicEvent = new BreakPCEvent(&pcEventQueue, "console panic");
badaddrEvent = new LinuxBadAddrEvent(&pcEventQueue, "badaddr");
skipPowerStateEvent = new LinuxSkipFuncEvent(&pcEventQueue,
"tl_v48_capture_power_state");
skipScavengeBootEvent = new LinuxSkipFuncEvent(&pcEventQueue,
"pmap_scavenge_boot");
printfEvent = new LinuxPrintfEvent(&pcEventQueue, "printf");
skipDelayLoopEvent = new LinuxSkipDelayLoopEvent(&pcEventQueue,
"calibrate_delay");
/* debugPrintfEvent = new DebugPrintfEvent(&pcEventQueue,
"debug_printf", false);
debugPrintfrEvent = new DebugPrintfEvent(&pcEventQueue,
"debug_printfr", true);
dumpMbufEvent = new DumpMbufEvent(&pcEventQueue, "dump_mbuf");
*/
#ifdef FS_MEASURE
//INSTRUMENTATION CODEGEN BEGIN TWO
if (bin == true) {
esIntrEvent = new FnEvent(&pcEventQueue, "es_intr", this);
esRxeofEvent = new FnEvent(&pcEventQueue, "es_rxeof", this);
esNewbufEvent = new FnEvent(&pcEventQueue, "es_newbuf", this);
esDmaLoadEvent = new FnEvent(&pcEventQueue, "es_dma_load", this);
dmaMapLoadEvent = new FnEvent(&pcEventQueue, "dma_map_load", this);
etherInputEvent = new FnEvent(&pcEventQueue, "ether_input", this);
netisrInputEvent = new FnEvent(&pcEventQueue, "netisr_input", this);
schednetisrIsrEvent = new FnEvent(&pcEventQueue, "schednetisr_isr", this);
ipintrEvent = new FnEvent(&pcEventQueue, "ipintr", this);
ipDooptionsEvent = new FnEvent(&pcEventQueue, "ip_dooptions", this);
ipReassEvent = new FnEvent(&pcEventQueue, "ip_reass", this);
tcpInputEvent = new FnEvent(&pcEventQueue, "tcp_input", this);
sbappendEvent = new FnEvent(&pcEventQueue, "sbappend", this);
readEvent = new FnEvent(&pcEventQueue, "read", this);
sooReadEvent = new FnEvent(&pcEventQueue, "soo_read", this);
orecvEvent = new FnEvent(&pcEventQueue, "orecv", this);
recvitEvent = new FnEvent(&pcEventQueue, "recvit", this);
soreceiveEvent = new FnEvent(&pcEventQueue, "soreceive", this);
osendEvent = new FnEvent(&pcEventQueue, "osend", this);
writeEvent = new FnEvent(&pcEventQueue, "write", this);
sooWriteEvent = new FnEvent(&pcEventQueue, "soo_write", this);
senditEvent = new FnEvent(&pcEventQueue, "sendit", this);
sosendEvent = new FnEvent(&pcEventQueue, "sosend", this);
tcpSosendEvent = new FnEvent(&pcEventQueue, "tcp_sosend", this);
tcpOutputEvent = new FnEvent(&pcEventQueue, "tcp_output", this);
ipOutputEvent = new FnEvent(&pcEventQueue, "ip_output", this);
etherOutputEvent = new FnEvent(&pcEventQueue, "ether_output", this);
esStartEvent = new FnEvent(&pcEventQueue, "es_start", this);
esTransmitEvent = new FnEvent(&pcEventQueue, "es_transmit", this);
esTxeofEvent = new FnEvent(&pcEventQueue, "es_txeof", this);
idleThreadEvent = new FnEvent(&pcEventQueue, "idle_thread", this);
}
//INSTRUMENTATION CODEGEN END
#endif //FS_MEASURE
Addr addr = 0;
if (kernelSymtab->findAddress("est_cycle_freq", addr)) {
Addr paddr = vtophys(physmem, addr);
uint8_t *est_cycle_frequency =
physmem->dma_addr(paddr, sizeof(uint64_t));
if (est_cycle_frequency)
*(uint64_t *)est_cycle_frequency = ticksPerSecond;
}
if (kernelSymtab->findAddress("aic7xxx_no_reset", addr)) {
Addr paddr = vtophys(physmem, addr);
uint8_t *aic7xxx_no_reset =
physmem->dma_addr(paddr, sizeof(uint32_t));
if (aic7xxx_no_reset) {
*(uint32_t *)aic7xxx_no_reset = 1;
}
}
if (consoleSymtab->findAddress("env_booted_osflags", addr)) {
Addr paddr = vtophys(physmem, addr);
char *osflags = (char *)physmem->dma_addr(paddr, sizeof(uint32_t));
if (osflags)
strcpy(osflags, boot_osflags.c_str());
}
if (kernelSymtab->findAddress("panic", addr))
kernelPanicEvent->schedule(addr);
else
panic("could not find kernel symbol \'panic\'");
if (consoleSymtab->findAddress("panic", addr))
consolePanicEvent->schedule(addr);
if (kernelSymtab->findAddress("badaddr", addr))
badaddrEvent->schedule(addr);
// else
//panic("could not find kernel symbol \'badaddr\'");
if (kernelSymtab->findAddress("tl_v48_capture_power_state", addr))
skipPowerStateEvent->schedule(addr);
if (kernelSymtab->findAddress("pmap_scavenge_boot", addr))
skipScavengeBootEvent->schedule(addr);
if (kernelSymtab->findAddress("calibrate_delay", addr))
skipDelayLoopEvent->schedule(addr+8);
#if TRACING_ON
if (kernelSymtab->findAddress("printk", addr))
printfEvent->schedule(addr);
if (kernelSymtab->findAddress("m5printf", addr))
debugPrintfEvent->schedule(addr);
if (kernelSymtab->findAddress("m5printfr", addr))
debugPrintfrEvent->schedule(addr);
if (kernelSymtab->findAddress("m5_dump_mbuf", addr))
dumpMbufEvent->schedule(addr);
#endif
#ifdef FS_MEASURE
//INSTRUMENTATION CODEGEN BEGIN THREE
if (bin == true) {
if (kernelSymtab->findAddress("es_intr", addr))
esIntrEvent->schedule(addr);
else
panic("could not find kernel symbol \'es_intr\'");
if (kernelSymtab->findAddress("es_rxeof", addr))
esRxeofEvent->schedule(addr);
else
panic("could not find kernel symbol \'es_rxeof\'");
if (kernelSymtab->findAddress("es_newbuf", addr))
esNewbufEvent->schedule(addr);
else
panic("could not find kernel symbol \'es_newbuf\'");
if (kernelSymtab->findAddress("es_dma_load", addr))
esDmaLoadEvent->schedule(addr);
else
panic("could not find kernel symbol \'es_dma_load\'");
if (kernelSymtab->findAddress("dma_map_load", addr))
dmaMapLoadEvent->schedule(addr);
else
panic("could not find kernel symbol \'dma_map_load\'");
if (kernelSymtab->findAddress("ether_input", addr))
etherInputEvent->schedule(addr);
else
panic("could not find kernel symbol \'ether_input\'");
if (kernelSymtab->findAddress("netisr_input", addr))
netisrInputEvent->schedule(addr);
else
panic("could not find kernel symbol \'netisr_input\'");
if (kernelSymtab->findAddress("schednetisr_isr", addr))
schednetisrIsrEvent->schedule(addr);
else
panic("could not find kernel symbol \'schednetisr_isr\'");
if (kernelSymtab->findAddress("ipintr", addr))
ipintrEvent->schedule(addr);
else
panic("could not find kernel symbol \'ipintr\'");
if (kernelSymtab->findAddress("ip_dooptions", addr))
ipDooptionsEvent->schedule(addr);
else
panic("could not find kernel symbol \'ip_dooptions\'");
if (kernelSymtab->findAddress("ip_reass", addr))
ipReassEvent->schedule(addr);
else
panic("could not find kernel symbol \'ip_reass\'");
if (kernelSymtab->findAddress("tcp_input", addr))
tcpInputEvent->schedule(addr);
else
panic("could not find kernel symbol \'tcp_input\'");
if (kernelSymtab->findAddress("sbappend", addr))
sbappendEvent->schedule(addr);
else
panic("could not find kernel symbol \'sbappend\'");
if (kernelSymtab->findAddress("read", addr))
readEvent->schedule(addr);
else
panic("could not find kernel symbol \'read\'");
if (kernelSymtab->findAddress("soo_read", addr))
sooReadEvent->schedule(addr);
else
panic("could not find kernel symbol \'soo_read\'");
if (kernelSymtab->findAddress("orecv", addr))
orecvEvent->schedule(addr);
else
panic("could not find kernel symbol \'orecv\'");
if (kernelSymtab->findAddress("recvit", addr))
recvitEvent->schedule(addr);
else
panic("could not find kernel symbol \'recvit\'");
if (kernelSymtab->findAddress("soreceive", addr))
soreceiveEvent->schedule(addr);
else
panic("could not find kernel symbol \'soreceive\'");
if (kernelSymtab->findAddress("osend", addr))
osendEvent->schedule(addr);
else
panic("could not find kernel symbol \'osend\'");
if (kernelSymtab->findAddress("write", addr))
writeEvent->schedule(addr);
else
panic("could not find kernel symbol \'write\'");
if (kernelSymtab->findAddress("soo_write", addr))
sooWriteEvent->schedule(addr);
else
panic("could not find kernel symbol \'soo_write\'");
if (kernelSymtab->findAddress("sendit", addr))
senditEvent->schedule(addr);
else
panic("could not find kernel symbol \'sendit\'");
if (kernelSymtab->findAddress("sosend", addr))
sosendEvent->schedule(addr);
else
panic("could not find kernel symbol \'sosend\'");
if (kernelSymtab->findAddress("tcp_sosend", addr))
tcpSosendEvent->schedule(addr);
else
panic("could not find kernel symbol \'tcp_sosend\'");
if (kernelSymtab->findAddress("tcp_output", addr))
tcpOutputEvent->schedule(addr);
else
panic("could not find kernel symbol \'tcp_output\'");
if (kernelSymtab->findAddress("ip_output", addr))
ipOutputEvent->schedule(addr);
else
panic("could not find kernel symbol \'ip_output\'");
if (kernelSymtab->findAddress("ether_output", addr))
etherOutputEvent->schedule(addr);
else
panic("could not find kernel symbol \'ether_output\'");
if (kernelSymtab->findAddress("es_start", addr))
esStartEvent->schedule(addr);
else
panic("could not find kernel symbol \'es_start\'");
if (kernelSymtab->findAddress("es_transmit", addr))
esTransmitEvent->schedule(addr);
else
panic("could not find kernel symbol \'es_transmit\'");
if (kernelSymtab->findAddress("es_txeof", addr))
esTxeofEvent->schedule(addr);
else
panic("could not find kernel symbol \'es_txeof\'");
if (kernelSymtab->findAddress("idle_thread", addr))
idleThreadEvent->schedule(addr);
else
panic("could not find kernel symbol \'idle_thread\'");
}
//INSTRUMENTATION CODEGEN END
if (bin == true) {
fnCalls
.name(name() + ":fnCalls")
.desc("all fn calls being tracked")
;
populateMap("es_intr", "");
populateMap("es_rxeof", "es_intr");
populateMap("es_newbuf", "es_rxeof");
populateMap("es_dma_load", "es_newbuf");
populateMap("dma_map_load", "es_dma_load");
populateMap("ether_input", "es_rxeof");
populateMap("netisr_input", "ether_input");
populateMap("schednetisr_isr", "netisr_input");
populateMap("ipintr", "");
populateMap("ip_dooptions", "ipintr");
populateMap("ip_reass", "ipintr");
populateMap("tcp_input", "ipintr");
populateMap("sbappend", "tcp_input");
populateMap("read", "");
populateMap("orecv", "");
populateMap("soo_read", "read");
populateMap("recvit", "orecv");
populateMap("soreceive", "recvit");
populateMap("soreceive", "soo_read");
populateMap("write", "");
populateMap("osend", "");
populateMap("soo_write", "write");
populateMap("sendit", "osend");
populateMap("sosend", "sendit");
populateMap("sosend", "soo_write");
populateMap("tcp_sosend", "sosend");
populateMap("tcp_output", "tcp_sosend");
populateMap("ip_output", "tcp_output");
populateMap("ether_output", "ip_output");
populateMap("es_start", "ether_output");
populateMap("es_transmit", "es_start");
populateMap("es_txeof", "es_intr");
populateMap("idle_thread", "");
}
#endif //FS_MEASURE
}
LinuxSystem::~LinuxSystem()
{
delete kernel;
delete console;
delete kernelSymtab;
delete consoleSymtab;
delete bootloaderSymtab;
delete kernelPanicEvent;
delete consolePanicEvent;
delete badaddrEvent;
delete skipPowerStateEvent;
delete skipScavengeBootEvent;
delete printfEvent;
/*delete debugPrintfEvent;
delete debugPrintfrEvent;
delete dumpMbufEvent;
*/
#ifdef FS_MEASURE
//INSTRUMENTATION CODEGEN BEGIN FOUR
if (bin == true) {
delete esIntrEvent;
delete esRxeofEvent;
delete esNewbufEvent;
delete esDmaLoadEvent;
delete dmaMapLoadEvent;
delete etherInputEvent;
delete netisrInputEvent;
delete schednetisrIsrEvent;
delete ipintrEvent;
delete ipDooptionsEvent;
delete ipReassEvent;
delete tcpInputEvent;
delete sbappendEvent;
delete readEvent;
delete sooReadEvent;
delete orecvEvent;
delete recvitEvent;
delete soreceiveEvent;
delete osendEvent;
delete writeEvent;
delete sooWriteEvent;
delete senditEvent;
delete sosendEvent;
delete tcpSosendEvent;
delete tcpOutputEvent;
delete ipOutputEvent;
delete etherOutputEvent;
delete esStartEvent;
delete esTransmitEvent;
delete esTxeofEvent;
delete idleThreadEvent;
}
//INSTRUMENTATION CODEGEN END
#endif //FS_MEASURE
}
void
LinuxSystem::setDelayLoop(ExecContext *xc)
{
Addr addr = 0;
if (kernelSymtab->findAddress("loops_per_jiffy", addr)) {
Addr paddr = vtophys(physmem, addr);
uint8_t *loops_per_jiffy =
physmem->dma_addr(paddr, sizeof(uint32_t));
Tick cpuFreq = xc->cpu->getFreq();
Tick intrFreq = platform->interrupt_frequency;
*(uint32_t *)loops_per_jiffy =
(uint32_t)((cpuFreq / intrFreq) * 0.9988);
}
}
int
LinuxSystem::registerExecContext(ExecContext *xc)
{
int xcIndex = System::registerExecContext(xc);
if (xcIndex == 0) {
// activate with zero delay so that we start ticking right
// away on cycle 0
xc->activate(0);
}
RemoteGDB *rgdb = new RemoteGDB(this, xc);
GDBListener *gdbl = new GDBListener(rgdb, 7000 + xcIndex);
gdbl->listen();
if (remoteGDB.size() <= xcIndex) {
remoteGDB.resize(xcIndex+1);
}
remoteGDB[xcIndex] = rgdb;
return xcIndex;
}
void
LinuxSystem::replaceExecContext(ExecContext *xc, int xcIndex)
{
System::replaceExecContext(xcIndex, xc);
remoteGDB[xcIndex]->replaceExecContext(xc);
}
bool
LinuxSystem::breakpoint()
{
return remoteGDB[0]->trap(ALPHA_KENTRY_IF);
}
#ifdef FS_MEASURE
void
LinuxSystem::populateMap(std::string callee, std::string caller)
{
multimap<const string, string>::const_iterator i;
i = callerMap.insert(make_pair(callee, caller));
assert(i != callerMap.end() && "should not fail populating callerMap");
}
bool
LinuxSystem::findCaller(std::string callee, std::string caller) const
{
typedef multimap<const std::string, std::string>::const_iterator iter;
pair<iter, iter> range;
range = callerMap.equal_range(callee);
for (iter i = range.first; i != range.second; ++i) {
if ((*i).second == caller)
return true;
}
return false;
}
void
LinuxSystem::dumpState(ExecContext *xc) const
{
#ifndef SW_DEBUG
return;
#endif
if (xc->swCtx) {
stack<fnCall *> copy(xc->swCtx->callStack);
if (copy.empty())
return;
cprintf("xc->swCtx:\n");
fnCall *top;
cprintf("|| call: %d\n",xc->swCtx->calls);
for (top = copy.top(); !copy.empty(); copy.pop() ) {
top = copy.top();
cprintf("|| %13s : %s \n", top->name, top->myBin->name());
}
}
}
#endif //FS_MEASURE
BEGIN_DECLARE_SIM_OBJECT_PARAMS(LinuxSystem)
Param<bool> bin;
SimObjectParam<MemoryController *> mem_ctl;
SimObjectParam<PhysicalMemory *> physmem;
Param<uint64_t> init_param;
Param<string> kernel_code;
Param<string> console_code;
Param<string> pal_code;
Param<string> boot_osflags;
Param<string> bootloader_code;
END_DECLARE_SIM_OBJECT_PARAMS(LinuxSystem)
BEGIN_INIT_SIM_OBJECT_PARAMS(LinuxSystem)
INIT_PARAM_DFLT(bin, "is this system to be binned", false),
INIT_PARAM(mem_ctl, "memory controller"),
INIT_PARAM(physmem, "phsyical memory"),
INIT_PARAM_DFLT(init_param, "numerical value to pass into simulator", 0),
INIT_PARAM(kernel_code, "file that contains the kernel code"),
INIT_PARAM(console_code, "file that contains the console code"),
INIT_PARAM(pal_code, "file that contains palcode"),
INIT_PARAM_DFLT(boot_osflags, "flags to pass to the kernel during boot",
"a"),
INIT_PARAM(bootloader_code, "file that contains the bootloader")
END_INIT_SIM_OBJECT_PARAMS(LinuxSystem)
CREATE_SIM_OBJECT(LinuxSystem)
{
LinuxSystem *sys = new LinuxSystem(getInstanceName(), init_param, mem_ctl,
physmem, kernel_code, console_code,
pal_code, boot_osflags, bootloader_code, bin);
return sys;
}
REGISTER_SIM_OBJECT("LinuxSystem", LinuxSystem)