gem5/arch/alpha/isa_desc
Ron Dreslinski 90def9ea9e Changes to start making the tree use the new memory system. Trying to compile decoder.cc but fails still.
SConscript:
    Place the memory objects back in the right place
arch/alpha/isa_desc:
    Fix includes to point to the new memory requests
cpu/exec_context.hh:
    Exec context now points to memory object, fix the include paths.
    Convert to prot_read/prot_write functions instead of read and write.
    Convert to new CpuRequestPtr instead of MemReqPtr.
mem/request.hh:
    Add back in support for Request Flags (needed by decoder to tag request) Removed the flags that were associated with packets/coherence.
sim/process.hh:
    Converted to point to new memory objects

--HG--
extra : convert_revision : a0b95380915d63b53194e2a26336d6adb1a0086b
2006-02-15 14:53:02 -05:00

2737 lines
76 KiB
C++

// -*- mode:c++ -*-
//Copyright (c) 2003, 2004, 2005
//The Regents of The University of Michigan
//All Rights Reserved
//This code is part of the M5 simulator, developed by Nathan Binkert,
//Erik Hallnor, Steve Raasch, and Steve Reinhardt, with contributions
//from Ron Dreslinski, Dave Greene, Lisa Hsu, Kevin Lim, Ali Saidi,
//and Andrew Schultz.
//Permission is granted to use, copy, create derivative works and
//redistribute this software and such derivative works for any purpose,
//so long as the copyright notice above, this grant of permission, and
//the disclaimer below appear in all copies made; and so long as the
//name of The University of Michigan is not used in any advertising or
//publicity pertaining to the use or distribution of this software
//without specific, written prior authorization.
//THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION FROM THE
//UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY PURPOSE, AND WITHOUT
//WARRANTY BY THE UNIVERSITY OF MICHIGAN OF ANY KIND, EITHER EXPRESS OR
//IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
//MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE REGENTS OF
//THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE FOR ANY DAMAGES,
//INCLUDING DIRECT, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
//DAMAGES, WITH RESPECT TO ANY CLAIM ARISING OUT OF OR IN CONNECTION
//WITH THE USE OF THE SOFTWARE, EVEN IF IT HAS BEEN OR IS HEREAFTER
//ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
////////////////////////////////////////////////////////////////////
//
// Alpha ISA description file.
//
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
//
// Output include file directives.
//
output header {{
#include <sstream>
#include <iostream>
#include <iomanip>
#include "config/ss_compatible_fp.hh"
#include "cpu/static_inst.hh"
#include "mem/request.hh" // some constructors use MemReq flags
}};
output decoder {{
#include "base/cprintf.hh"
#include "base/fenv.hh"
#include "base/loader/symtab.hh"
#include "config/ss_compatible_fp.hh"
#include "cpu/exec_context.hh" // for Jump::branchTarget()
#include <math.h>
}};
output exec {{
#include <math.h>
#if FULL_SYSTEM
#include "arch/alpha/pseudo_inst.hh"
#endif
#include "base/fenv.hh"
#include "config/ss_compatible_fp.hh"
#include "cpu/base.hh"
#include "cpu/exetrace.hh"
#include "sim/sim_exit.hh"
}};
////////////////////////////////////////////////////////////////////
//
// Namespace statement. Everything below this line will be in the
// AlphaISAInst namespace.
//
namespace AlphaISA;
////////////////////////////////////////////////////////////////////
//
// Bitfield definitions.
//
// Universal (format-independent) fields
def bitfield OPCODE <31:26>;
def bitfield RA <25:21>;
def bitfield RB <20:16>;
// Memory format
def signed bitfield MEMDISP <15: 0>; // displacement
def bitfield MEMFUNC <15: 0>; // function code (same field, unsigned)
// Memory-format jumps
def bitfield JMPFUNC <15:14>; // function code (disp<15:14>)
def bitfield JMPHINT <13: 0>; // tgt Icache idx hint (disp<13:0>)
// Branch format
def signed bitfield BRDISP <20: 0>; // displacement
// Integer operate format(s>;
def bitfield INTIMM <20:13>; // integer immediate (literal)
def bitfield IMM <12:12>; // immediate flag
def bitfield INTFUNC <11: 5>; // function code
def bitfield RC < 4: 0>; // dest reg
// Floating-point operate format
def bitfield FA <25:21>;
def bitfield FB <20:16>;
def bitfield FP_FULLFUNC <15: 5>; // complete function code
def bitfield FP_TRAPMODE <15:13>; // trapping mode
def bitfield FP_ROUNDMODE <12:11>; // rounding mode
def bitfield FP_TYPEFUNC <10: 5>; // type+func: handiest for decoding
def bitfield FP_SRCTYPE <10: 9>; // source reg type
def bitfield FP_SHORTFUNC < 8: 5>; // short function code
def bitfield FP_SHORTFUNC_TOP2 <8:7>; // top 2 bits of short func code
def bitfield FC < 4: 0>; // dest reg
// PALcode format
def bitfield PALFUNC <25: 0>; // function code
// EV5 PAL instructions:
// HW_LD/HW_ST
def bitfield HW_LDST_PHYS <15>; // address is physical
def bitfield HW_LDST_ALT <14>; // use ALT_MODE IPR
def bitfield HW_LDST_WRTCK <13>; // HW_LD only: fault if no write acc
def bitfield HW_LDST_QUAD <12>; // size: 0=32b, 1=64b
def bitfield HW_LDST_VPTE <11>; // HW_LD only: is PTE fetch
def bitfield HW_LDST_LOCK <10>; // HW_LD only: is load locked
def bitfield HW_LDST_COND <10>; // HW_ST only: is store conditional
def signed bitfield HW_LDST_DISP <9:0>; // signed displacement
// HW_REI
def bitfield HW_REI_TYP <15:14>; // type: stalling vs. non-stallingk
def bitfield HW_REI_MBZ <13: 0>; // must be zero
// HW_MTPR/MW_MFPR
def bitfield HW_IPR_IDX <15:0>; // IPR index
// M5 instructions
def bitfield M5FUNC <7:0>;
def operand_types {{
'sb' : ('signed int', 8),
'ub' : ('unsigned int', 8),
'sw' : ('signed int', 16),
'uw' : ('unsigned int', 16),
'sl' : ('signed int', 32),
'ul' : ('unsigned int', 32),
'sq' : ('signed int', 64),
'uq' : ('unsigned int', 64),
'sf' : ('float', 32),
'df' : ('float', 64)
}};
def operands {{
# Int regs default to unsigned, but code should not count on this.
# For clarity, descriptions that depend on unsigned behavior should
# explicitly specify '.uq'.
'Ra': IntRegOperandTraits('uq', 'RA', 'IsInteger', 1),
'Rb': IntRegOperandTraits('uq', 'RB', 'IsInteger', 2),
'Rc': IntRegOperandTraits('uq', 'RC', 'IsInteger', 3),
'Fa': FloatRegOperandTraits('df', 'FA', 'IsFloating', 1),
'Fb': FloatRegOperandTraits('df', 'FB', 'IsFloating', 2),
'Fc': FloatRegOperandTraits('df', 'FC', 'IsFloating', 3),
'Mem': MemOperandTraits('uq', None,
('IsMemRef', 'IsLoad', 'IsStore'), 4),
'NPC': NPCOperandTraits('uq', None, ( None, None, 'IsControl' ), 4),
'Runiq': ControlRegOperandTraits('uq', 'Uniq', None, 1),
'FPCR': ControlRegOperandTraits('uq', 'Fpcr', None, 1),
# The next two are hacks for non-full-system call-pal emulation
'R0': IntRegOperandTraits('uq', '0', None, 1),
'R16': IntRegOperandTraits('uq', '16', None, 1)
}};
////////////////////////////////////////////////////////////////////
//
// Basic instruction classes/templates/formats etc.
//
output header {{
// uncomment the following to get SimpleScalar-compatible disassembly
// (useful for diffing output traces).
// #define SS_COMPATIBLE_DISASSEMBLY
/**
* Base class for all Alpha static instructions.
*/
class AlphaStaticInst : public StaticInst<AlphaISA>
{
protected:
/// Make AlphaISA register dependence tags directly visible in
/// this class and derived classes. Maybe these should really
/// live here and not in the AlphaISA namespace.
enum DependenceTags {
FP_Base_DepTag = AlphaISA::FP_Base_DepTag,
Fpcr_DepTag = AlphaISA::Fpcr_DepTag,
Uniq_DepTag = AlphaISA::Uniq_DepTag,
IPR_Base_DepTag = AlphaISA::IPR_Base_DepTag
};
/// Constructor.
AlphaStaticInst(const char *mnem, MachInst _machInst,
OpClass __opClass)
: StaticInst<AlphaISA>(mnem, _machInst, __opClass)
{
}
/// Print a register name for disassembly given the unique
/// dependence tag number (FP or int).
void printReg(std::ostream &os, int reg) const;
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
void
AlphaStaticInst::printReg(std::ostream &os, int reg) const
{
if (reg < FP_Base_DepTag) {
ccprintf(os, "r%d", reg);
}
else {
ccprintf(os, "f%d", reg - FP_Base_DepTag);
}
}
std::string
AlphaStaticInst::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
ccprintf(ss, "%-10s ", mnemonic);
// just print the first two source regs... if there's
// a third one, it's a read-modify-write dest (Rc),
// e.g. for CMOVxx
if (_numSrcRegs > 0) {
printReg(ss, _srcRegIdx[0]);
}
if (_numSrcRegs > 1) {
ss << ",";
printReg(ss, _srcRegIdx[1]);
}
// just print the first dest... if there's a second one,
// it's generally implicit
if (_numDestRegs > 0) {
if (_numSrcRegs > 0)
ss << ",";
printReg(ss, _destRegIdx[0]);
}
return ss.str();
}
}};
// Declarations for execute() methods.
def template BasicExecDeclare {{
Fault execute(%(CPU_exec_context)s *, Trace::InstRecord *) const;
}};
// Basic instruction class declaration template.
def template BasicDeclare {{
/**
* Static instruction class for "%(mnemonic)s".
*/
class %(class_name)s : public %(base_class)s
{
public:
/// Constructor.
%(class_name)s(MachInst machInst);
%(BasicExecDeclare)s
};
}};
// Basic instruction class constructor template.
def template BasicConstructor {{
inline %(class_name)s::%(class_name)s(MachInst machInst)
: %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
{
%(constructor)s;
}
}};
// Basic instruction class execute method template.
def template BasicExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = No_Fault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(code)s;
if (fault == No_Fault) {
%(op_wb)s;
}
return fault;
}
}};
// Basic decode template.
def template BasicDecode {{
return new %(class_name)s(machInst);
}};
// Basic decode template, passing mnemonic in as string arg to constructor.
def template BasicDecodeWithMnemonic {{
return new %(class_name)s("%(mnemonic)s", machInst);
}};
// The most basic instruction format... used only for a few misc. insts
def format BasicOperate(code, *flags) {{
iop = InstObjParams(name, Name, 'AlphaStaticInst', CodeBlock(code), flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
////////////////////////////////////////////////////////////////////
//
// Nop
//
output header {{
/**
* Static instruction class for no-ops. This is a leaf class.
*/
class Nop : public AlphaStaticInst
{
/// Disassembly of original instruction.
const std::string originalDisassembly;
public:
/// Constructor
Nop(const std::string _originalDisassembly, MachInst _machInst)
: AlphaStaticInst("nop", _machInst, No_OpClass),
originalDisassembly(_originalDisassembly)
{
flags[IsNop] = true;
}
~Nop() { }
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
%(BasicExecDeclare)s
};
}};
output decoder {{
std::string Nop::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
#ifdef SS_COMPATIBLE_DISASSEMBLY
return originalDisassembly;
#else
return csprintf("%-10s (%s)", "nop", originalDisassembly);
#endif
}
/// Helper function for decoding nops. Substitute Nop object
/// for original inst passed in as arg (and delete latter).
inline
AlphaStaticInst *
makeNop(AlphaStaticInst *inst)
{
AlphaStaticInst *nop = new Nop(inst->disassemble(0), inst->machInst);
delete inst;
return nop;
}
}};
output exec {{
Fault
Nop::execute(%(CPU_exec_context)s *, Trace::InstRecord *) const
{
return No_Fault;
}
}};
// integer & FP operate instructions use Rc as dest, so check for
// Rc == 31 to detect nops
def template OperateNopCheckDecode {{
{
AlphaStaticInst *i = new %(class_name)s(machInst);
if (RC == 31) {
i = makeNop(i);
}
return i;
}
}};
// Like BasicOperate format, but generates NOP if RC/FC == 31
def format BasicOperateWithNopCheck(code, *opt_args) {{
iop = InstObjParams(name, Name, 'AlphaStaticInst', CodeBlock(code),
opt_args)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = OperateNopCheckDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
////////////////////////////////////////////////////////////////////
//
// Integer operate instructions
//
output header {{
/**
* Base class for integer immediate instructions.
*/
class IntegerImm : public AlphaStaticInst
{
protected:
/// Immediate operand value (unsigned 8-bit int).
uint8_t imm;
/// Constructor
IntegerImm(const char *mnem, MachInst _machInst, OpClass __opClass)
: AlphaStaticInst(mnem, _machInst, __opClass), imm(INTIMM)
{
}
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string
IntegerImm::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
ccprintf(ss, "%-10s ", mnemonic);
// just print the first source reg... if there's
// a second one, it's a read-modify-write dest (Rc),
// e.g. for CMOVxx
if (_numSrcRegs > 0) {
printReg(ss, _srcRegIdx[0]);
ss << ",";
}
ss << (int)imm;
if (_numDestRegs > 0) {
ss << ",";
printReg(ss, _destRegIdx[0]);
}
return ss.str();
}
}};
def template RegOrImmDecode {{
{
AlphaStaticInst *i =
(IMM) ? (AlphaStaticInst *)new %(class_name)sImm(machInst)
: (AlphaStaticInst *)new %(class_name)s(machInst);
if (RC == 31) {
i = makeNop(i);
}
return i;
}
}};
// Primary format for integer operate instructions:
// - Generates both reg-reg and reg-imm versions if Rb_or_imm is used.
// - Generates NOP if RC == 31.
def format IntegerOperate(code, *opt_flags) {{
# If the code block contains 'Rb_or_imm', we define two instructions,
# one using 'Rb' and one using 'imm', and have the decoder select
# the right one.
uses_imm = (code.find('Rb_or_imm') != -1)
if uses_imm:
orig_code = code
# base code is reg version:
# rewrite by substituting 'Rb' for 'Rb_or_imm'
code = re.sub(r'Rb_or_imm', 'Rb', orig_code)
# generate immediate version by substituting 'imm'
# note that imm takes no extenstion, so we extend
# the regexp to replace any extension as well
imm_code = re.sub(r'Rb_or_imm(\.\w+)?', 'imm', orig_code)
# generate declaration for register version
cblk = CodeBlock(code)
iop = InstObjParams(name, Name, 'AlphaStaticInst', cblk, opt_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
exec_output = BasicExecute.subst(iop)
if uses_imm:
# append declaration for imm version
imm_cblk = CodeBlock(imm_code)
imm_iop = InstObjParams(name, Name + 'Imm', 'IntegerImm', imm_cblk,
opt_flags)
header_output += BasicDeclare.subst(imm_iop)
decoder_output += BasicConstructor.subst(imm_iop)
exec_output += BasicExecute.subst(imm_iop)
# decode checks IMM bit to pick correct version
decode_block = RegOrImmDecode.subst(iop)
else:
# no imm version: just check for nop
decode_block = OperateNopCheckDecode.subst(iop)
}};
////////////////////////////////////////////////////////////////////
//
// Floating-point instructions
//
// Note that many FP-type instructions which do not support all the
// various rounding & trapping modes use the simpler format
// BasicOperateWithNopCheck.
//
output exec {{
/// Check "FP enabled" machine status bit. Called when executing any FP
/// instruction in full-system mode.
/// @retval Full-system mode: No_Fault if FP is enabled, Fen_Fault
/// if not. Non-full-system mode: always returns No_Fault.
#if FULL_SYSTEM
inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc)
{
Fault fault = No_Fault; // dummy... this ipr access should not fault
if (!EV5::ICSR_FPE(xc->readIpr(AlphaISA::IPR_ICSR, fault))) {
fault = Fen_Fault;
}
return fault;
}
#else
inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc)
{
return No_Fault;
}
#endif
}};
output header {{
/**
* Base class for general floating-point instructions. Includes
* support for various Alpha rounding and trapping modes. Only FP
* instructions that require this support are derived from this
* class; the rest derive directly from AlphaStaticInst.
*/
class AlphaFP : public AlphaStaticInst
{
public:
/// Alpha FP rounding modes.
enum RoundingMode {
Chopped = 0, ///< round toward zero
Minus_Infinity = 1, ///< round toward minus infinity
Normal = 2, ///< round to nearest (default)
Dynamic = 3, ///< use FPCR setting (in instruction)
Plus_Infinity = 3 ///< round to plus inifinity (in FPCR)
};
/// Alpha FP trapping modes.
/// For instructions that produce integer results, the
/// "Underflow Enable" modes really mean "Overflow Enable", and
/// the assembly modifier is V rather than U.
enum TrappingMode {
/// default: nothing enabled
Imprecise = 0, ///< no modifier
/// underflow/overflow traps enabled, inexact disabled
Underflow_Imprecise = 1, ///< /U or /V
Underflow_Precise = 5, ///< /SU or /SV
/// underflow/overflow and inexact traps enabled
Underflow_Inexact_Precise = 7 ///< /SUI or /SVI
};
protected:
/// Map Alpha rounding mode to C99 constants from <fenv.h>.
static const int alphaToC99RoundingMode[];
/// Map enum RoundingMode values to disassembly suffixes.
static const char *roundingModeSuffix[];
/// Map enum TrappingMode values to FP disassembly suffixes.
static const char *fpTrappingModeSuffix[];
/// Map enum TrappingMode values to integer disassembly suffixes.
static const char *intTrappingModeSuffix[];
/// This instruction's rounding mode.
RoundingMode roundingMode;
/// This instruction's trapping mode.
TrappingMode trappingMode;
/// Have we warned about this instruction's unsupported
/// rounding mode (if applicable)?
mutable bool warnedOnRounding;
/// Have we warned about this instruction's unsupported
/// trapping mode (if applicable)?
mutable bool warnedOnTrapping;
/// Constructor
AlphaFP(const char *mnem, MachInst _machInst, OpClass __opClass)
: AlphaStaticInst(mnem, _machInst, __opClass),
roundingMode((enum RoundingMode)FP_ROUNDMODE),
trappingMode((enum TrappingMode)FP_TRAPMODE),
warnedOnRounding(false),
warnedOnTrapping(false)
{
}
int getC99RoundingMode(uint64_t fpcr_val) const;
// This differs from the AlphaStaticInst version only in
// printing suffixes for non-default rounding & trapping modes.
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
int
AlphaFP::getC99RoundingMode(uint64_t fpcr_val) const
{
if (roundingMode == Dynamic) {
return alphaToC99RoundingMode[bits(fpcr_val, 59, 58)];
}
else {
return alphaToC99RoundingMode[roundingMode];
}
}
std::string
AlphaFP::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::string mnem_str(mnemonic);
#ifndef SS_COMPATIBLE_DISASSEMBLY
std::string suffix("");
suffix += ((_destRegIdx[0] >= FP_Base_DepTag)
? fpTrappingModeSuffix[trappingMode]
: intTrappingModeSuffix[trappingMode]);
suffix += roundingModeSuffix[roundingMode];
if (suffix != "") {
mnem_str = csprintf("%s/%s", mnemonic, suffix);
}
#endif
std::stringstream ss;
ccprintf(ss, "%-10s ", mnem_str.c_str());
// just print the first two source regs... if there's
// a third one, it's a read-modify-write dest (Rc),
// e.g. for CMOVxx
if (_numSrcRegs > 0) {
printReg(ss, _srcRegIdx[0]);
}
if (_numSrcRegs > 1) {
ss << ",";
printReg(ss, _srcRegIdx[1]);
}
// just print the first dest... if there's a second one,
// it's generally implicit
if (_numDestRegs > 0) {
if (_numSrcRegs > 0)
ss << ",";
printReg(ss, _destRegIdx[0]);
}
return ss.str();
}
const int AlphaFP::alphaToC99RoundingMode[] = {
FE_TOWARDZERO, // Chopped
FE_DOWNWARD, // Minus_Infinity
FE_TONEAREST, // Normal
FE_UPWARD // Dynamic in inst, Plus_Infinity in FPCR
};
const char *AlphaFP::roundingModeSuffix[] = { "c", "m", "", "d" };
// mark invalid trapping modes, but don't fail on them, because
// you could decode anything on a misspeculated path
const char *AlphaFP::fpTrappingModeSuffix[] =
{ "", "u", "INVTM2", "INVTM3", "INVTM4", "su", "INVTM6", "sui" };
const char *AlphaFP::intTrappingModeSuffix[] =
{ "", "v", "INVTM2", "INVTM3", "INVTM4", "sv", "INVTM6", "svi" };
}};
// FP instruction class execute method template. Handles non-standard
// rounding modes.
def template FloatingPointExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
if (trappingMode != Imprecise && !warnedOnTrapping) {
warn("%s: non-standard trapping mode not supported",
generateDisassembly(0, NULL));
warnedOnTrapping = true;
}
Fault fault = No_Fault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
#if USE_FENV
if (roundingMode == Normal) {
%(code)s;
} else {
fesetround(getC99RoundingMode(xc->readFpcr()));
%(code)s;
fesetround(FE_TONEAREST);
}
#else
if (roundingMode != Normal && !warnedOnRounding) {
warn("%s: non-standard rounding mode not supported",
generateDisassembly(0, NULL));
warnedOnRounding = true;
}
%(code)s;
#endif
if (fault == No_Fault) {
%(op_wb)s;
}
return fault;
}
}};
// FP instruction class execute method template where no dynamic
// rounding mode control is needed. Like BasicExecute, but includes
// check & warning for non-standard trapping mode.
def template FPFixedRoundingExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
if (trappingMode != Imprecise && !warnedOnTrapping) {
warn("%s: non-standard trapping mode not supported",
generateDisassembly(0, NULL));
warnedOnTrapping = true;
}
Fault fault = No_Fault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(code)s;
if (fault == No_Fault) {
%(op_wb)s;
}
return fault;
}
}};
def template FloatingPointDecode {{
{
AlphaStaticInst *i = new %(class_name)s(machInst);
if (FC == 31) {
i = makeNop(i);
}
return i;
}
}};
// General format for floating-point operate instructions:
// - Checks trapping and rounding mode flags. Trapping modes
// currently unimplemented (will fail).
// - Generates NOP if FC == 31.
def format FloatingPointOperate(code, *opt_args) {{
iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args)
decode_block = FloatingPointDecode.subst(iop)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
exec_output = FloatingPointExecute.subst(iop)
}};
// Special format for cvttq where rounding mode is pre-decoded
def format FPFixedRounding(code, class_suffix, *opt_args) {{
Name += class_suffix
iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args)
decode_block = FloatingPointDecode.subst(iop)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
exec_output = FPFixedRoundingExecute.subst(iop)
}};
////////////////////////////////////////////////////////////////////
//
// Memory-format instructions: LoadAddress, Load, Store
//
output header {{
/**
* Base class for general Alpha memory-format instructions.
*/
class Memory : public AlphaStaticInst
{
protected:
/// Memory request flags. See mem_req_base.hh.
unsigned memAccessFlags;
/// Pointer to EAComp object.
const StaticInstPtr<AlphaISA> eaCompPtr;
/// Pointer to MemAcc object.
const StaticInstPtr<AlphaISA> memAccPtr;
/// Constructor
Memory(const char *mnem, MachInst _machInst, OpClass __opClass,
StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr)
: AlphaStaticInst(mnem, _machInst, __opClass),
memAccessFlags(0), eaCompPtr(_eaCompPtr), memAccPtr(_memAccPtr)
{
}
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
public:
const StaticInstPtr<AlphaISA> &eaCompInst() const { return eaCompPtr; }
const StaticInstPtr<AlphaISA> &memAccInst() const { return memAccPtr; }
};
/**
* Base class for memory-format instructions using a 32-bit
* displacement (i.e. most of them).
*/
class MemoryDisp32 : public Memory
{
protected:
/// Displacement for EA calculation (signed).
int32_t disp;
/// Constructor.
MemoryDisp32(const char *mnem, MachInst _machInst, OpClass __opClass,
StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr)
: Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr),
disp(MEMDISP)
{
}
};
/**
* Base class for a few miscellaneous memory-format insts
* that don't interpret the disp field: wh64, fetch, fetch_m, ecb.
* None of these instructions has a destination register either.
*/
class MemoryNoDisp : public Memory
{
protected:
/// Constructor
MemoryNoDisp(const char *mnem, MachInst _machInst, OpClass __opClass,
StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr)
: Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr)
{
}
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string
Memory::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return csprintf("%-10s %c%d,%d(r%d)", mnemonic,
flags[IsFloating] ? 'f' : 'r', RA, MEMDISP, RB);
}
std::string
MemoryNoDisp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return csprintf("%-10s (r%d)", mnemonic, RB);
}
}};
def format LoadAddress(code) {{
iop = InstObjParams(name, Name, 'MemoryDisp32', CodeBlock(code))
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
def template LoadStoreDeclare {{
/**
* Static instruction class for "%(mnemonic)s".
*/
class %(class_name)s : public %(base_class)s
{
protected:
/**
* "Fake" effective address computation class for "%(mnemonic)s".
*/
class EAComp : public %(base_class)s
{
public:
/// Constructor
EAComp(MachInst machInst);
%(BasicExecDeclare)s
};
/**
* "Fake" memory access instruction class for "%(mnemonic)s".
*/
class MemAcc : public %(base_class)s
{
public:
/// Constructor
MemAcc(MachInst machInst);
%(BasicExecDeclare)s
};
public:
/// Constructor.
%(class_name)s(MachInst machInst);
%(BasicExecDeclare)s
};
}};
def template LoadStoreConstructor {{
/** TODO: change op_class to AddrGenOp or something (requires
* creating new member of OpClass enum in op_class.hh, updating
* config files, etc.). */
inline %(class_name)s::EAComp::EAComp(MachInst machInst)
: %(base_class)s("%(mnemonic)s (EAComp)", machInst, IntAluOp)
{
%(ea_constructor)s;
}
inline %(class_name)s::MemAcc::MemAcc(MachInst machInst)
: %(base_class)s("%(mnemonic)s (MemAcc)", machInst, %(op_class)s)
{
%(memacc_constructor)s;
}
inline %(class_name)s::%(class_name)s(MachInst machInst)
: %(base_class)s("%(mnemonic)s", machInst, %(op_class)s,
new EAComp(machInst), new MemAcc(machInst))
{
%(constructor)s;
}
}};
def template EACompExecute {{
Fault
%(class_name)s::EAComp::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = No_Fault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(code)s;
if (fault == No_Fault) {
%(op_wb)s;
xc->setEA(EA);
}
return fault;
}
}};
def template MemAccExecute {{
Fault
%(class_name)s::MemAcc::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = No_Fault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_nonmem_rd)s;
EA = xc->getEA();
if (fault == No_Fault) {
%(op_mem_rd)s;
%(code)s;
}
if (fault == No_Fault) {
%(op_mem_wb)s;
}
if (fault == No_Fault) {
%(postacc_code)s;
}
if (fault == No_Fault) {
%(op_nonmem_wb)s;
}
return fault;
}
}};
def template LoadStoreExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = No_Fault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_nonmem_rd)s;
%(ea_code)s;
if (fault == No_Fault) {
%(op_mem_rd)s;
%(memacc_code)s;
}
if (fault == No_Fault) {
%(op_mem_wb)s;
}
if (fault == No_Fault) {
%(postacc_code)s;
}
if (fault == No_Fault) {
%(op_nonmem_wb)s;
}
return fault;
}
}};
def template PrefetchExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Addr EA;
Fault fault = No_Fault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_nonmem_rd)s;
%(ea_code)s;
if (fault == No_Fault) {
xc->prefetch(EA, memAccessFlags);
}
return No_Fault;
}
}};
// load instructions use Ra as dest, so check for
// Ra == 31 to detect nops
def template LoadNopCheckDecode {{
{
AlphaStaticInst *i = new %(class_name)s(machInst);
if (RA == 31) {
i = makeNop(i);
}
return i;
}
}};
// for some load instructions, Ra == 31 indicates a prefetch (not a nop)
def template LoadPrefetchCheckDecode {{
{
if (RA != 31) {
return new %(class_name)s(machInst);
}
else {
return new %(class_name)sPrefetch(machInst);
}
}
}};
let {{
def LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code = '',
base_class = 'MemoryDisp32', flags = [],
decode_template = BasicDecode,
exec_template = LoadStoreExecute):
# Segregate flags into instruction flags (handled by InstObjParams)
# and memory access flags (handled here).
# Would be nice to autogenerate this list, but oh well.
valid_mem_flags = ['LOCKED', 'NO_FAULT', 'EVICT_NEXT', 'PF_EXCLUSIVE']
mem_flags = [f for f in flags if f in valid_mem_flags]
inst_flags = [f for f in flags if f not in valid_mem_flags]
# add hook to get effective addresses into execution trace output.
ea_code += '\nif (traceData) { traceData->setAddr(EA); }\n'
# generate code block objects
ea_cblk = CodeBlock(ea_code)
memacc_cblk = CodeBlock(memacc_code)
postacc_cblk = CodeBlock(postacc_code)
# Some CPU models execute the memory operation as an atomic unit,
# while others want to separate them into an effective address
# computation and a memory access operation. As a result, we need
# to generate three StaticInst objects. Note that the latter two
# are nested inside the larger "atomic" one.
# generate InstObjParams for EAComp object
ea_iop = InstObjParams(name, Name, base_class, ea_cblk, inst_flags)
# generate InstObjParams for MemAcc object
memacc_iop = InstObjParams(name, Name, base_class, memacc_cblk, inst_flags)
# in the split execution model, the MemAcc portion is responsible
# for the post-access code.
memacc_iop.postacc_code = postacc_cblk.code
# generate InstObjParams for unified execution
cblk = CodeBlock(ea_code + memacc_code + postacc_code)
iop = InstObjParams(name, Name, base_class, cblk, inst_flags)
iop.ea_constructor = ea_cblk.constructor
iop.ea_code = ea_cblk.code
iop.memacc_constructor = memacc_cblk.constructor
iop.memacc_code = memacc_cblk.code
iop.postacc_code = postacc_cblk.code
if mem_flags:
s = '\n\tmemAccessFlags = ' + string.join(mem_flags, '|') + ';'
iop.constructor += s
memacc_iop.constructor += s
# (header_output, decoder_output, decode_block, exec_output)
return (LoadStoreDeclare.subst(iop), LoadStoreConstructor.subst(iop),
decode_template.subst(iop),
EACompExecute.subst(ea_iop)
+ MemAccExecute.subst(memacc_iop)
+ exec_template.subst(iop))
}};
def format LoadOrNop(ea_code, memacc_code, *flags) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags,
decode_template = LoadNopCheckDecode)
}};
// Note that the flags passed in apply only to the prefetch version
def format LoadOrPrefetch(ea_code, memacc_code, *pf_flags) {{
# declare the load instruction object and generate the decode block
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code,
decode_template = LoadPrefetchCheckDecode)
# Declare the prefetch instruction object.
# convert flags from tuple to list to make them mutable
pf_flags = list(pf_flags) + ['IsMemRef', 'IsLoad', 'IsDataPrefetch', 'MemReadOp', 'NO_FAULT']
(pf_header_output, pf_decoder_output, _, pf_exec_output) = \
LoadStoreBase(name, Name + 'Prefetch', ea_code, '',
flags = pf_flags, exec_template = PrefetchExecute)
header_output += pf_header_output
decoder_output += pf_decoder_output
exec_output += pf_exec_output
}};
def format Store(ea_code, memacc_code, *flags) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags)
}};
def format StoreCond(ea_code, memacc_code, postacc_code, *flags) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code,
flags = flags)
}};
// Use 'MemoryNoDisp' as base: for wh64, fetch, ecb
def format MiscPrefetch(ea_code, memacc_code, *flags) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags,
base_class = 'MemoryNoDisp')
}};
////////////////////////////////////////////////////////////////////
//
// Control transfer instructions
//
output header {{
/**
* Base class for instructions whose disassembly is not purely a
* function of the machine instruction (i.e., it depends on the
* PC). This class overrides the disassemble() method to check
* the PC and symbol table values before re-using a cached
* disassembly string. This is necessary for branches and jumps,
* where the disassembly string includes the target address (which
* may depend on the PC and/or symbol table).
*/
class PCDependentDisassembly : public AlphaStaticInst
{
protected:
/// Cached program counter from last disassembly
mutable Addr cachedPC;
/// Cached symbol table pointer from last disassembly
mutable const SymbolTable *cachedSymtab;
/// Constructor
PCDependentDisassembly(const char *mnem, MachInst _machInst,
OpClass __opClass)
: AlphaStaticInst(mnem, _machInst, __opClass),
cachedPC(0), cachedSymtab(0)
{
}
const std::string &
disassemble(Addr pc, const SymbolTable *symtab) const;
};
/**
* Base class for branches (PC-relative control transfers),
* conditional or unconditional.
*/
class Branch : public PCDependentDisassembly
{
protected:
/// Displacement to target address (signed).
int32_t disp;
/// Constructor.
Branch(const char *mnem, MachInst _machInst, OpClass __opClass)
: PCDependentDisassembly(mnem, _machInst, __opClass),
disp(BRDISP << 2)
{
}
Addr branchTarget(Addr branchPC) const;
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
/**
* Base class for jumps (register-indirect control transfers). In
* the Alpha ISA, these are always unconditional.
*/
class Jump : public PCDependentDisassembly
{
protected:
/// Displacement to target address (signed).
int32_t disp;
public:
/// Constructor
Jump(const char *mnem, MachInst _machInst, OpClass __opClass)
: PCDependentDisassembly(mnem, _machInst, __opClass),
disp(BRDISP)
{
}
Addr branchTarget(ExecContext *xc) const;
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
Addr
Branch::branchTarget(Addr branchPC) const
{
return branchPC + 4 + disp;
}
Addr
Jump::branchTarget(ExecContext *xc) const
{
Addr NPC = xc->readPC() + 4;
uint64_t Rb = xc->readIntReg(_srcRegIdx[0]);
return (Rb & ~3) | (NPC & 1);
}
const std::string &
PCDependentDisassembly::disassemble(Addr pc,
const SymbolTable *symtab) const
{
if (!cachedDisassembly ||
pc != cachedPC || symtab != cachedSymtab)
{
if (cachedDisassembly)
delete cachedDisassembly;
cachedDisassembly =
new std::string(generateDisassembly(pc, symtab));
cachedPC = pc;
cachedSymtab = symtab;
}
return *cachedDisassembly;
}
std::string
Branch::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
ccprintf(ss, "%-10s ", mnemonic);
// There's only one register arg (RA), but it could be
// either a source (the condition for conditional
// branches) or a destination (the link reg for
// unconditional branches)
if (_numSrcRegs > 0) {
printReg(ss, _srcRegIdx[0]);
ss << ",";
}
else if (_numDestRegs > 0) {
printReg(ss, _destRegIdx[0]);
ss << ",";
}
#ifdef SS_COMPATIBLE_DISASSEMBLY
if (_numSrcRegs == 0 && _numDestRegs == 0) {
printReg(ss, 31);
ss << ",";
}
#endif
Addr target = pc + 4 + disp;
std::string str;
if (symtab && symtab->findSymbol(target, str))
ss << str;
else
ccprintf(ss, "0x%x", target);
return ss.str();
}
std::string
Jump::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
ccprintf(ss, "%-10s ", mnemonic);
#ifdef SS_COMPATIBLE_DISASSEMBLY
if (_numDestRegs == 0) {
printReg(ss, 31);
ss << ",";
}
#endif
if (_numDestRegs > 0) {
printReg(ss, _destRegIdx[0]);
ss << ",";
}
ccprintf(ss, "(r%d)", RB);
return ss.str();
}
}};
def template JumpOrBranchDecode {{
return (RA == 31)
? (StaticInst<AlphaISA> *)new %(class_name)s(machInst)
: (StaticInst<AlphaISA> *)new %(class_name)sAndLink(machInst);
}};
def format CondBranch(code) {{
code = 'bool cond;\n' + code + '\nif (cond) NPC = NPC + disp;\n';
iop = InstObjParams(name, Name, 'Branch', CodeBlock(code),
('IsDirectControl', 'IsCondControl'))
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
let {{
def UncondCtrlBase(name, Name, base_class, npc_expr, flags):
# Declare basic control transfer w/o link (i.e. link reg is R31)
nolink_code = 'NPC = %s;\n' % npc_expr
nolink_iop = InstObjParams(name, Name, base_class,
CodeBlock(nolink_code), flags)
header_output = BasicDeclare.subst(nolink_iop)
decoder_output = BasicConstructor.subst(nolink_iop)
exec_output = BasicExecute.subst(nolink_iop)
# Generate declaration of '*AndLink' version, append to decls
link_code = 'Ra = NPC & ~3;\n' + nolink_code
link_iop = InstObjParams(name, Name + 'AndLink', base_class,
CodeBlock(link_code), flags)
header_output += BasicDeclare.subst(link_iop)
decoder_output += BasicConstructor.subst(link_iop)
exec_output += BasicExecute.subst(link_iop)
# need to use link_iop for the decode template since it is expecting
# the shorter version of class_name (w/o "AndLink")
return (header_output, decoder_output,
JumpOrBranchDecode.subst(nolink_iop), exec_output)
}};
def format UncondBranch(*flags) {{
flags += ('IsUncondControl', 'IsDirectControl')
(header_output, decoder_output, decode_block, exec_output) = \
UncondCtrlBase(name, Name, 'Branch', 'NPC + disp', flags)
}};
def format Jump(*flags) {{
flags += ('IsUncondControl', 'IsIndirectControl')
(header_output, decoder_output, decode_block, exec_output) = \
UncondCtrlBase(name, Name, 'Jump', '(Rb & ~3) | (NPC & 1)', flags)
}};
////////////////////////////////////////////////////////////////////
//
// PAL calls
//
output header {{
/**
* Base class for emulated call_pal calls (used only in
* non-full-system mode).
*/
class EmulatedCallPal : public AlphaStaticInst
{
protected:
/// Constructor.
EmulatedCallPal(const char *mnem, MachInst _machInst,
OpClass __opClass)
: AlphaStaticInst(mnem, _machInst, __opClass)
{
}
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string
EmulatedCallPal::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
#ifdef SS_COMPATIBLE_DISASSEMBLY
return csprintf("%s %s", "call_pal", mnemonic);
#else
return csprintf("%-10s %s", "call_pal", mnemonic);
#endif
}
}};
def format EmulatedCallPal(code, *flags) {{
iop = InstObjParams(name, Name, 'EmulatedCallPal', CodeBlock(code), flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
output header {{
/**
* Base class for full-system-mode call_pal instructions.
* Probably could turn this into a leaf class and get rid of the
* parser template.
*/
class CallPalBase : public AlphaStaticInst
{
protected:
int palFunc; ///< Function code part of instruction
int palOffset; ///< Target PC, offset from IPR_PAL_BASE
bool palValid; ///< is the function code valid?
bool palPriv; ///< is this call privileged?
/// Constructor.
CallPalBase(const char *mnem, MachInst _machInst,
OpClass __opClass);
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
inline
CallPalBase::CallPalBase(const char *mnem, MachInst _machInst,
OpClass __opClass)
: AlphaStaticInst(mnem, _machInst, __opClass),
palFunc(PALFUNC)
{
// From the 21164 HRM (paraphrased):
// Bit 7 of the function code (mask 0x80) indicates
// whether the call is privileged (bit 7 == 0) or
// unprivileged (bit 7 == 1). The privileged call table
// starts at 0x2000, the unprivielged call table starts at
// 0x3000. Bits 5-0 (mask 0x3f) are used to calculate the
// offset.
const int palPrivMask = 0x80;
const int palOffsetMask = 0x3f;
// Pal call is invalid unless all other bits are 0
palValid = ((machInst & ~(palPrivMask | palOffsetMask)) == 0);
palPriv = ((machInst & palPrivMask) == 0);
int shortPalFunc = (machInst & palOffsetMask);
// Add 1 to base to set pal-mode bit
palOffset = (palPriv ? 0x2001 : 0x3001) + (shortPalFunc << 6);
}
std::string
CallPalBase::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return csprintf("%-10s %#x", "call_pal", palFunc);
}
}};
def format CallPal(code, *flags) {{
iop = InstObjParams(name, Name, 'CallPalBase', CodeBlock(code), flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
////////////////////////////////////////////////////////////////////
//
// hw_ld, hw_st
//
output header {{
/**
* Base class for hw_ld and hw_st.
*/
class HwLoadStore : public Memory
{
protected:
/// Displacement for EA calculation (signed).
int16_t disp;
/// Constructor
HwLoadStore(const char *mnem, MachInst _machInst, OpClass __opClass,
StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr);
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
inline
HwLoadStore::HwLoadStore(const char *mnem, MachInst _machInst,
OpClass __opClass,
StaticInstPtr<AlphaISA> _eaCompPtr,
StaticInstPtr<AlphaISA> _memAccPtr)
: Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr),
disp(HW_LDST_DISP)
{
memAccessFlags = 0;
if (HW_LDST_PHYS) memAccessFlags |= PHYSICAL;
if (HW_LDST_ALT) memAccessFlags |= ALTMODE;
if (HW_LDST_VPTE) memAccessFlags |= VPTE;
if (HW_LDST_LOCK) memAccessFlags |= LOCKED;
}
std::string
HwLoadStore::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
#ifdef SS_COMPATIBLE_DISASSEMBLY
return csprintf("%-10s r%d,%d(r%d)", mnemonic, RA, disp, RB);
#else
// HW_LDST_LOCK and HW_LDST_COND are the same bit.
const char *lock_str =
(HW_LDST_LOCK) ? (flags[IsLoad] ? ",LOCK" : ",COND") : "";
return csprintf("%-10s r%d,%d(r%d)%s%s%s%s%s",
mnemonic, RA, disp, RB,
HW_LDST_PHYS ? ",PHYS" : "",
HW_LDST_ALT ? ",ALT" : "",
HW_LDST_QUAD ? ",QUAD" : "",
HW_LDST_VPTE ? ",VPTE" : "",
lock_str);
#endif
}
}};
def format HwLoadStore(ea_code, memacc_code, class_ext, *flags) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name + class_ext, ea_code, memacc_code,
flags = flags, base_class = 'HwLoadStore')
}};
def format HwStoreCond(ea_code, memacc_code, postacc_code, class_ext, *flags) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name + class_ext, ea_code, memacc_code,
postacc_code, flags = flags, base_class = 'HwLoadStore')
}};
output header {{
/**
* Base class for hw_mfpr and hw_mtpr.
*/
class HwMoveIPR : public AlphaStaticInst
{
protected:
/// Index of internal processor register.
int ipr_index;
/// Constructor
HwMoveIPR(const char *mnem, MachInst _machInst, OpClass __opClass)
: AlphaStaticInst(mnem, _machInst, __opClass),
ipr_index(HW_IPR_IDX)
{
}
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string
HwMoveIPR::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
if (_numSrcRegs > 0) {
// must be mtpr
return csprintf("%-10s r%d,IPR(%#x)",
mnemonic, RA, ipr_index);
}
else {
// must be mfpr
return csprintf("%-10s IPR(%#x),r%d",
mnemonic, ipr_index, RA);
}
}
}};
def format HwMoveIPR(code) {{
iop = InstObjParams(name, Name, 'HwMoveIPR', CodeBlock(code),
['IprAccessOp'])
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
////////////////////////////////////////////////////////////////////
//
// Unimplemented instructions
//
output header {{
/**
* Static instruction class for unimplemented instructions that
* cause simulator termination. Note that these are recognized
* (legal) instructions that the simulator does not support; the
* 'Unknown' class is used for unrecognized/illegal instructions.
* This is a leaf class.
*/
class FailUnimplemented : public AlphaStaticInst
{
public:
/// Constructor
FailUnimplemented(const char *_mnemonic, MachInst _machInst)
: AlphaStaticInst(_mnemonic, _machInst, No_OpClass)
{
// don't call execute() (which panics) if we're on a
// speculative path
flags[IsNonSpeculative] = true;
}
%(BasicExecDeclare)s
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
/**
* Base class for unimplemented instructions that cause a warning
* to be printed (but do not terminate simulation). This
* implementation is a little screwy in that it will print a
* warning for each instance of a particular unimplemented machine
* instruction, not just for each unimplemented opcode. Should
* probably make the 'warned' flag a static member of the derived
* class.
*/
class WarnUnimplemented : public AlphaStaticInst
{
private:
/// Have we warned on this instruction yet?
mutable bool warned;
public:
/// Constructor
WarnUnimplemented(const char *_mnemonic, MachInst _machInst)
: AlphaStaticInst(_mnemonic, _machInst, No_OpClass), warned(false)
{
// don't call execute() (which panics) if we're on a
// speculative path
flags[IsNonSpeculative] = true;
}
%(BasicExecDeclare)s
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string
FailUnimplemented::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
return csprintf("%-10s (unimplemented)", mnemonic);
}
std::string
WarnUnimplemented::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
#ifdef SS_COMPATIBLE_DISASSEMBLY
return csprintf("%-10s", mnemonic);
#else
return csprintf("%-10s (unimplemented)", mnemonic);
#endif
}
}};
output exec {{
Fault
FailUnimplemented::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
panic("attempt to execute unimplemented instruction '%s' "
"(inst 0x%08x, opcode 0x%x)", mnemonic, machInst, OPCODE);
return Unimplemented_Opcode_Fault;
}
Fault
WarnUnimplemented::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
if (!warned) {
warn("instruction '%s' unimplemented\n", mnemonic);
warned = true;
}
return No_Fault;
}
}};
def format FailUnimpl() {{
iop = InstObjParams(name, 'FailUnimplemented')
decode_block = BasicDecodeWithMnemonic.subst(iop)
}};
def format WarnUnimpl() {{
iop = InstObjParams(name, 'WarnUnimplemented')
decode_block = BasicDecodeWithMnemonic.subst(iop)
}};
output header {{
/**
* Static instruction class for unknown (illegal) instructions.
* These cause simulator termination if they are executed in a
* non-speculative mode. This is a leaf class.
*/
class Unknown : public AlphaStaticInst
{
public:
/// Constructor
Unknown(MachInst _machInst)
: AlphaStaticInst("unknown", _machInst, No_OpClass)
{
// don't call execute() (which panics) if we're on a
// speculative path
flags[IsNonSpeculative] = true;
}
%(BasicExecDeclare)s
std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
////////////////////////////////////////////////////////////////////
//
// Unknown instructions
//
output decoder {{
std::string
Unknown::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return csprintf("%-10s (inst 0x%x, opcode 0x%x)",
"unknown", machInst, OPCODE);
}
}};
output exec {{
Fault
Unknown::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
panic("attempt to execute unknown instruction "
"(inst 0x%08x, opcode 0x%x)", machInst, OPCODE);
return Unimplemented_Opcode_Fault;
}
}};
def format Unknown() {{
decode_block = 'return new Unknown(machInst);\n'
}};
////////////////////////////////////////////////////////////////////
//
// Utility functions for execute methods
//
output exec {{
/// Return opa + opb, summing carry into third arg.
inline uint64_t
addc(uint64_t opa, uint64_t opb, int &carry)
{
uint64_t res = opa + opb;
if (res < opa || res < opb)
++carry;
return res;
}
/// Multiply two 64-bit values (opa * opb), returning the 128-bit
/// product in res_hi and res_lo.
inline void
mul128(uint64_t opa, uint64_t opb, uint64_t &res_hi, uint64_t &res_lo)
{
// do a 64x64 --> 128 multiply using four 32x32 --> 64 multiplies
uint64_t opa_hi = opa<63:32>;
uint64_t opa_lo = opa<31:0>;
uint64_t opb_hi = opb<63:32>;
uint64_t opb_lo = opb<31:0>;
res_lo = opa_lo * opb_lo;
// The middle partial products logically belong in bit
// positions 95 to 32. Thus the lower 32 bits of each product
// sum into the upper 32 bits of the low result, while the
// upper 32 sum into the low 32 bits of the upper result.
uint64_t partial1 = opa_hi * opb_lo;
uint64_t partial2 = opa_lo * opb_hi;
uint64_t partial1_lo = partial1<31:0> << 32;
uint64_t partial1_hi = partial1<63:32>;
uint64_t partial2_lo = partial2<31:0> << 32;
uint64_t partial2_hi = partial2<63:32>;
// Add partial1_lo and partial2_lo to res_lo, keeping track
// of any carries out
int carry_out = 0;
res_lo = addc(partial1_lo, res_lo, carry_out);
res_lo = addc(partial2_lo, res_lo, carry_out);
// Now calculate the high 64 bits...
res_hi = (opa_hi * opb_hi) + partial1_hi + partial2_hi + carry_out;
}
/// Map 8-bit S-floating exponent to 11-bit T-floating exponent.
/// See Table 2-2 of Alpha AHB.
inline int
map_s(int old_exp)
{
int hibit = old_exp<7:>;
int lobits = old_exp<6:0>;
if (hibit == 1) {
return (lobits == 0x7f) ? 0x7ff : (0x400 | lobits);
}
else {
return (lobits == 0) ? 0 : (0x380 | lobits);
}
}
/// Convert a 32-bit S-floating value to the equivalent 64-bit
/// representation to be stored in an FP reg.
inline uint64_t
s_to_t(uint32_t s_val)
{
uint64_t tmp = s_val;
return (tmp<31:> << 63 // sign bit
| (uint64_t)map_s(tmp<30:23>) << 52 // exponent
| tmp<22:0> << 29); // fraction
}
/// Convert a 64-bit T-floating value to the equivalent 32-bit
/// S-floating representation to be stored in memory.
inline int32_t
t_to_s(uint64_t t_val)
{
return (t_val<63:62> << 30 // sign bit & hi exp bit
| t_val<58:29>); // rest of exp & fraction
}
}};
////////////////////////////////////////////////////////////////////
//
// The actual decoder specification
//
decode OPCODE default Unknown::unknown() {
format LoadAddress {
0x08: lda({{ Ra = Rb + disp; }});
0x09: ldah({{ Ra = Rb + (disp << 16); }});
}
format LoadOrNop {
0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }});
0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }});
0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }});
0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }});
0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED);
0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED);
0x20: copy_load({{EA = Ra;}},
{{fault = xc->copySrcTranslate(EA);}},
IsMemRef, IsLoad, IsCopy);
}
format LoadOrPrefetch {
0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }});
0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT);
// IsFloating flag on lds gets the prefetch to disassemble
// using f31 instead of r31... funcitonally it's unnecessary
0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }},
PF_EXCLUSIVE, IsFloating);
}
format Store {
0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }});
0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }});
0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }});
0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }});
0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }});
0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }});
0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }});
0x24: copy_store({{EA = Rb;}},
{{fault = xc->copy(EA);}},
IsMemRef, IsStore, IsCopy);
}
format StoreCond {
0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }},
{{
uint64_t tmp = Mem_write_result;
// see stq_c
Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
}}, LOCKED);
0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }},
{{
uint64_t tmp = Mem_write_result;
// If the write operation returns 0 or 1, then
// this was a conventional store conditional,
// and the value indicates the success/failure
// of the operation. If another value is
// returned, then this was a Turbolaser
// mailbox access, and we don't update the
// result register at all.
Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
}}, LOCKED);
}
format IntegerOperate {
0x10: decode INTFUNC { // integer arithmetic operations
0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
0x40: addlv({{
uint32_t tmp = Ra.sl + Rb_or_imm.sl;
// signed overflow occurs when operands have same sign
// and sign of result does not match.
if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
fault = Integer_Overflow_Fault;
Rc.sl = tmp;
}});
0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
0x20: addq({{ Rc = Ra + Rb_or_imm; }});
0x60: addqv({{
uint64_t tmp = Ra + Rb_or_imm;
// signed overflow occurs when operands have same sign
// and sign of result does not match.
if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
fault = Integer_Overflow_Fault;
Rc = tmp;
}});
0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
0x49: sublv({{
uint32_t tmp = Ra.sl - Rb_or_imm.sl;
// signed overflow detection is same as for add,
// except we need to look at the *complemented*
// sign bit of the subtrahend (Rb), i.e., if the initial
// signs are the *same* then no overflow can occur
if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
fault = Integer_Overflow_Fault;
Rc.sl = tmp;
}});
0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
0x29: subq({{ Rc = Ra - Rb_or_imm; }});
0x69: subqv({{
uint64_t tmp = Ra - Rb_or_imm;
// signed overflow detection is same as for add,
// except we need to look at the *complemented*
// sign bit of the subtrahend (Rb), i.e., if the initial
// signs are the *same* then no overflow can occur
if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
fault = Integer_Overflow_Fault;
Rc = tmp;
}});
0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }});
0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }});
0x0f: cmpbge({{
int hi = 7;
int lo = 0;
uint64_t tmp = 0;
for (int i = 0; i < 8; ++i) {
tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
hi += 8;
lo += 8;
}
Rc = tmp;
}});
}
0x11: decode INTFUNC { // integer logical operations
0x00: and({{ Rc = Ra & Rb_or_imm; }});
0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
0x20: bis({{ Rc = Ra | Rb_or_imm; }});
0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
// conditional moves
0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }});
0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }});
// For AMASK, RA must be R31.
0x61: decode RA {
31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
}
// For IMPLVER, RA must be R31 and the B operand
// must be the immediate value 1.
0x6c: decode RA {
31: decode IMM {
1: decode INTIMM {
// return EV5 for FULL_SYSTEM and EV6 otherwise
1: implver({{
#if FULL_SYSTEM
Rc = 1;
#else
Rc = 2;
#endif
}});
}
}
}
#if FULL_SYSTEM
// The mysterious 11.25...
0x25: WarnUnimpl::eleven25();
#endif
}
0x12: decode INTFUNC {
0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
0x52: mskwh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
}});
0x62: msklh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
}});
0x72: mskqh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
}});
0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
0x5a: extwh({{
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
0x6a: extlh({{
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
0x7a: extqh({{
Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
0x57: inswh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
}});
0x67: inslh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
}});
0x77: insqh({{
int bv = Rb_or_imm<2:0>;
Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0;
}});
0x30: zap({{
uint64_t zapmask = 0;
for (int i = 0; i < 8; ++i) {
if (Rb_or_imm<i:>)
zapmask |= (mask(8) << (i * 8));
}
Rc = Ra & ~zapmask;
}});
0x31: zapnot({{
uint64_t zapmask = 0;
for (int i = 0; i < 8; ++i) {
if (!Rb_or_imm<i:>)
zapmask |= (mask(8) << (i * 8));
}
Rc = Ra & ~zapmask;
}});
}
0x13: decode INTFUNC { // integer multiplies
0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp);
0x30: umulh({{
uint64_t hi, lo;
mul128(Ra, Rb_or_imm, hi, lo);
Rc = hi;
}}, IntMultOp);
0x40: mullv({{
// 32-bit multiply with trap on overflow
int64_t Rax = Ra.sl; // sign extended version of Ra.sl
int64_t Rbx = Rb_or_imm.sl;
int64_t tmp = Rax * Rbx;
// To avoid overflow, all the upper 32 bits must match
// the sign bit of the lower 32. We code this as
// checking the upper 33 bits for all 0s or all 1s.
uint64_t sign_bits = tmp<63:31>;
if (sign_bits != 0 && sign_bits != mask(33))
fault = Integer_Overflow_Fault;
Rc.sl = tmp<31:0>;
}}, IntMultOp);
0x60: mulqv({{
// 64-bit multiply with trap on overflow
uint64_t hi, lo;
mul128(Ra, Rb_or_imm, hi, lo);
// all the upper 64 bits must match the sign bit of
// the lower 64
if (!((hi == 0 && lo<63:> == 0) ||
(hi == mask(64) && lo<63:> == 1)))
fault = Integer_Overflow_Fault;
Rc = lo;
}}, IntMultOp);
}
0x1c: decode INTFUNC {
0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
0x32: ctlz({{
uint64_t count = 0;
uint64_t temp = Rb;
if (temp<63:32>) temp >>= 32; else count += 32;
if (temp<31:16>) temp >>= 16; else count += 16;
if (temp<15:8>) temp >>= 8; else count += 8;
if (temp<7:4>) temp >>= 4; else count += 4;
if (temp<3:2>) temp >>= 2; else count += 2;
if (temp<1:1>) temp >>= 1; else count += 1;
if ((temp<0:0>) != 0x1) count += 1;
Rc = count;
}}, IntAluOp);
0x33: cttz({{
uint64_t count = 0;
uint64_t temp = Rb;
if (!(temp<31:0>)) { temp >>= 32; count += 32; }
if (!(temp<15:0>)) { temp >>= 16; count += 16; }
if (!(temp<7:0>)) { temp >>= 8; count += 8; }
if (!(temp<3:0>)) { temp >>= 4; count += 4; }
if (!(temp<1:0>)) { temp >>= 2; count += 2; }
if (!(temp<0:0> & ULL(0x1))) count += 1;
Rc = count;
}}, IntAluOp);
format FailUnimpl {
0x30: ctpop();
0x31: perr();
0x34: unpkbw();
0x35: unpkbl();
0x36: pkwb();
0x37: pklb();
0x38: minsb8();
0x39: minsw4();
0x3a: minub8();
0x3b: minuw4();
0x3c: maxub8();
0x3d: maxuw4();
0x3e: maxsb8();
0x3f: maxsw4();
}
format BasicOperateWithNopCheck {
0x70: decode RB {
31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
}
0x78: decode RB {
31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
FloatCvtOp);
}
}
}
}
// Conditional branches.
format CondBranch {
0x39: beq({{ cond = (Ra == 0); }});
0x3d: bne({{ cond = (Ra != 0); }});
0x3e: bge({{ cond = (Ra.sq >= 0); }});
0x3f: bgt({{ cond = (Ra.sq > 0); }});
0x3b: ble({{ cond = (Ra.sq <= 0); }});
0x3a: blt({{ cond = (Ra.sq < 0); }});
0x38: blbc({{ cond = ((Ra & 1) == 0); }});
0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
0x31: fbeq({{ cond = (Fa == 0); }});
0x35: fbne({{ cond = (Fa != 0); }});
0x36: fbge({{ cond = (Fa >= 0); }});
0x37: fbgt({{ cond = (Fa > 0); }});
0x33: fble({{ cond = (Fa <= 0); }});
0x32: fblt({{ cond = (Fa < 0); }});
}
// unconditional branches
format UncondBranch {
0x30: br();
0x34: bsr(IsCall);
}
// indirect branches
0x1a: decode JMPFUNC {
format Jump {
0: jmp();
1: jsr(IsCall);
2: ret(IsReturn);
3: jsr_coroutine(IsCall, IsReturn);
}
}
// Square root and integer-to-FP moves
0x14: decode FP_SHORTFUNC {
// Integer to FP register moves must have RB == 31
0x4: decode RB {
31: decode FP_FULLFUNC {
format BasicOperateWithNopCheck {
0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
0x014: FailUnimpl::itoff(); // VAX-format conversion
}
}
}
// Square root instructions must have FA == 31
0xb: decode FA {
31: decode FP_TYPEFUNC {
format FloatingPointOperate {
#if SS_COMPATIBLE_FP
0x0b: sqrts({{
if (Fb < 0.0)
fault = Arithmetic_Fault;
Fc = sqrt(Fb);
}}, FloatSqrtOp);
#else
0x0b: sqrts({{
if (Fb.sf < 0.0)
fault = Arithmetic_Fault;
Fc.sf = sqrt(Fb.sf);
}}, FloatSqrtOp);
#endif
0x2b: sqrtt({{
if (Fb < 0.0)
fault = Arithmetic_Fault;
Fc = sqrt(Fb);
}}, FloatSqrtOp);
}
}
}
// VAX-format sqrtf and sqrtg are not implemented
0xa: FailUnimpl::sqrtfg();
}
// IEEE floating point
0x16: decode FP_SHORTFUNC_TOP2 {
// The top two bits of the short function code break this
// space into four groups: binary ops, compares, reserved, and
// conversions. See Table 4-12 of AHB. There are different
// special cases in these different groups, so we decode on
// these top two bits first just to select a decode strategy.
// Most of these instructions may have various trapping and
// rounding mode flags set; these are decoded in the
// FloatingPointDecode template used by the
// FloatingPointOperate format.
// add/sub/mul/div: just decode on the short function code
// and source type. All valid trapping and rounding modes apply.
0: decode FP_TRAPMODE {
// check for valid trapping modes here
0,1,5,7: decode FP_TYPEFUNC {
format FloatingPointOperate {
#if SS_COMPATIBLE_FP
0x00: adds({{ Fc = Fa + Fb; }});
0x01: subs({{ Fc = Fa - Fb; }});
0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
#else
0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
#endif
0x20: addt({{ Fc = Fa + Fb; }});
0x21: subt({{ Fc = Fa - Fb; }});
0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
}
}
}
// Floating-point compare instructions must have the default
// rounding mode, and may use the default trapping mode or
// /SU. Both trapping modes are treated the same by M5; the
// only difference on the real hardware (as far a I can tell)
// is that without /SU you'd get an imprecise trap if you
// tried to compare a NaN with something else (instead of an
// "unordered" result).
1: decode FP_FULLFUNC {
format BasicOperateWithNopCheck {
0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
FloatCmpOp);
0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
FloatCmpOp);
0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }},
FloatCmpOp);
0x0a4, 0x5a4: cmptun({{ // unordered
Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
}}, FloatCmpOp);
}
}
// The FP-to-integer and integer-to-FP conversion insts
// require that FA be 31.
3: decode FA {
31: decode FP_TYPEFUNC {
format FloatingPointOperate {
0x2f: decode FP_ROUNDMODE {
format FPFixedRounding {
// "chopped" i.e. round toward zero
0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
Chopped);
// round to minus infinity
1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
MinusInfinity);
}
default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
}
// The cvtts opcode is overloaded to be cvtst if the trap
// mode is 2 or 6 (which are not valid otherwise)
0x2c: decode FP_FULLFUNC {
format BasicOperateWithNopCheck {
// trap on denorm version "cvtst/s" is
// simulated same as cvtst
0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
}
default: cvtts({{ Fc.sf = Fb; }});
}
// The trapping mode for integer-to-FP conversions
// must be /SUI or nothing; /U and /SU are not
// allowed. The full set of rounding modes are
// supported though.
0x3c: decode FP_TRAPMODE {
0,7: cvtqs({{ Fc.sf = Fb.sq; }});
}
0x3e: decode FP_TRAPMODE {
0,7: cvtqt({{ Fc = Fb.sq; }});
}
}
}
}
}
// misc FP operate
0x17: decode FP_FULLFUNC {
format BasicOperateWithNopCheck {
0x010: cvtlq({{
Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
}});
0x030: cvtql({{
Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
}});
// We treat the precise & imprecise trapping versions of
// cvtql identically.
0x130, 0x530: cvtqlv({{
// To avoid overflow, all the upper 32 bits must match
// the sign bit of the lower 32. We code this as
// checking the upper 33 bits for all 0s or all 1s.
uint64_t sign_bits = Fb.uq<63:31>;
if (sign_bits != 0 && sign_bits != mask(33))
fault = Integer_Overflow_Fault;
Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
}});
0x020: cpys({{ // copy sign
Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
}});
0x021: cpysn({{ // copy sign negated
Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
}});
0x022: cpyse({{ // copy sign and exponent
Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
}});
0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
0x024: mt_fpcr({{ FPCR = Fa.uq; }});
0x025: mf_fpcr({{ Fa.uq = FPCR; }});
}
}
// miscellaneous mem-format ops
0x18: decode MEMFUNC {
format WarnUnimpl {
0x8000: fetch();
0xa000: fetch_m();
0xe800: ecb();
}
format MiscPrefetch {
0xf800: wh64({{ EA = Rb & ~ULL(63); }},
{{ xc->writeHint(EA, 64, memAccessFlags); }},
IsMemRef, IsDataPrefetch, IsStore, MemWriteOp,
NO_FAULT);
}
format BasicOperate {
0xc000: rpcc({{
#if FULL_SYSTEM
/* Rb is a fake dependency so here is a fun way to get
* the parser to understand that.
*/
Ra = xc->readIpr(AlphaISA::IPR_CC, fault) + (Rb & 0);
#else
Ra = curTick;
#endif
}});
// All of the barrier instructions below do nothing in
// their execute() methods (hence the empty code blocks).
// All of their functionality is hard-coded in the
// pipeline based on the flags IsSerializing,
// IsMemBarrier, and IsWriteBarrier. In the current
// detailed CPU model, the execute() function only gets
// called at fetch, so there's no way to generate pipeline
// behavior at any other stage. Once we go to an
// exec-in-exec CPU model we should be able to get rid of
// these flags and implement this behavior via the
// execute() methods.
// trapb is just a barrier on integer traps, where excb is
// a barrier on integer and FP traps. "EXCB is thus a
// superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
// them the same though.
0x0000: trapb({{ }}, IsSerializing, No_OpClass);
0x0400: excb({{ }}, IsSerializing, No_OpClass);
0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
}
#if FULL_SYSTEM
format BasicOperate {
0xe000: rc({{
Ra = xc->readIntrFlag();
xc->setIntrFlag(0);
}}, IsNonSpeculative);
0xf000: rs({{
Ra = xc->readIntrFlag();
xc->setIntrFlag(1);
}}, IsNonSpeculative);
}
#else
format FailUnimpl {
0xe000: rc();
0xf000: rs();
}
#endif
}
#if FULL_SYSTEM
0x00: CallPal::call_pal({{
if (!palValid ||
(palPriv
&& xc->readIpr(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) {
// invalid pal function code, or attempt to do privileged
// PAL call in non-kernel mode
fault = Unimplemented_Opcode_Fault;
}
else {
// check to see if simulator wants to do something special
// on this PAL call (including maybe suppress it)
bool dopal = xc->simPalCheck(palFunc);
if (dopal) {
AlphaISA::swap_palshadow(&xc->xcBase()->regs, true);
xc->setIpr(AlphaISA::IPR_EXC_ADDR, NPC);
NPC = xc->readIpr(AlphaISA::IPR_PAL_BASE, fault) + palOffset;
}
}
}}, IsNonSpeculative);
#else
0x00: decode PALFUNC {
format EmulatedCallPal {
0x00: halt ({{
SimExit(curTick, "halt instruction encountered");
}}, IsNonSpeculative);
0x83: callsys({{
xc->syscall();
}}, IsNonSpeculative);
// Read uniq reg into ABI return value register (r0)
0x9e: rduniq({{ R0 = Runiq; }});
// Write uniq reg with value from ABI arg register (r16)
0x9f: wruniq({{ Runiq = R16; }});
}
}
#endif
#if FULL_SYSTEM
format HwLoadStore {
0x1b: decode HW_LDST_QUAD {
0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
}
0x1f: decode HW_LDST_COND {
0: decode HW_LDST_QUAD {
0: hw_st({{ EA = (Rb + disp) & ~3; }},
{{ Mem.ul = Ra<31:0>; }}, L);
1: hw_st({{ EA = (Rb + disp) & ~7; }},
{{ Mem.uq = Ra.uq; }}, Q);
}
1: FailUnimpl::hw_st_cond();
}
}
format HwMoveIPR {
0x19: hw_mfpr({{
// this instruction is only valid in PAL mode
if (!xc->inPalMode()) {
fault = Unimplemented_Opcode_Fault;
}
else {
Ra = xc->readIpr(ipr_index, fault);
}
}});
0x1d: hw_mtpr({{
// this instruction is only valid in PAL mode
if (!xc->inPalMode()) {
fault = Unimplemented_Opcode_Fault;
}
else {
xc->setIpr(ipr_index, Ra);
if (traceData) { traceData->setData(Ra); }
}
}});
}
format BasicOperate {
0x1e: hw_rei({{ xc->hwrei(); }}, IsSerializing);
// M5 special opcodes use the reserved 0x01 opcode space
0x01: decode M5FUNC {
0x00: arm({{
AlphaPseudo::arm(xc->xcBase());
}}, IsNonSpeculative);
0x01: quiesce({{
AlphaPseudo::quiesce(xc->xcBase());
}}, IsNonSpeculative);
0x10: ivlb({{
AlphaPseudo::ivlb(xc->xcBase());
}}, No_OpClass, IsNonSpeculative);
0x11: ivle({{
AlphaPseudo::ivle(xc->xcBase());
}}, No_OpClass, IsNonSpeculative);
0x20: m5exit_old({{
AlphaPseudo::m5exit_old(xc->xcBase());
}}, No_OpClass, IsNonSpeculative);
0x21: m5exit({{
AlphaPseudo::m5exit(xc->xcBase());
}}, No_OpClass, IsNonSpeculative);
0x30: initparam({{ Ra = xc->xcBase()->cpu->system->init_param; }});
0x40: resetstats({{
AlphaPseudo::resetstats(xc->xcBase());
}}, IsNonSpeculative);
0x41: dumpstats({{
AlphaPseudo::dumpstats(xc->xcBase());
}}, IsNonSpeculative);
0x42: dumpresetstats({{
AlphaPseudo::dumpresetstats(xc->xcBase());
}}, IsNonSpeculative);
0x43: m5checkpoint({{
AlphaPseudo::m5checkpoint(xc->xcBase());
}}, IsNonSpeculative);
0x50: m5readfile({{
AlphaPseudo::readfile(xc->xcBase());
}}, IsNonSpeculative);
0x51: m5break({{
AlphaPseudo::debugbreak(xc->xcBase());
}}, IsNonSpeculative);
0x52: m5switchcpu({{
AlphaPseudo::switchcpu(xc->xcBase());
}}, IsNonSpeculative);
0x53: m5addsymbol({{
AlphaPseudo::addsymbol(xc->xcBase());
}}, IsNonSpeculative);
}
}
#endif
}