gem5/src/mem/ruby/network/MessageBuffer.hh
Joel Hestness 3a656da1a6 ruby: Make MessageBuffers actually finite sized
When Ruby controllers stall messages in MessageBuffers, the buffer moves those
messages off the priority heap and into a per-address stall map. When buffers
are finite-sized, the test areNSlotsAvailable() only checks the size of the
priority heap, but ignores the stall map, so the map is allowed to grow
unbounded if the controller stalls numerous messages. This patch fixes the
problem by tracking the stall map size and testing the total number of messages
in the buffer appropriately.
2016-12-20 11:38:24 -06:00

205 lines
7.3 KiB
C++

/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Unordered buffer of messages that can be inserted such
* that they can be dequeued after a given delta time has expired.
*/
#ifndef __MEM_RUBY_BUFFERS_MESSAGEBUFFER_HH__
#define __MEM_RUBY_BUFFERS_MESSAGEBUFFER_HH__
#include <algorithm>
#include <cassert>
#include <functional>
#include <iostream>
#include <string>
#include <vector>
#include "debug/RubyQueue.hh"
#include "mem/ruby/common/Address.hh"
#include "mem/ruby/common/Consumer.hh"
#include "mem/ruby/slicc_interface/Message.hh"
#include "mem/packet.hh"
#include "params/MessageBuffer.hh"
#include "sim/sim_object.hh"
class MessageBuffer : public SimObject
{
public:
typedef MessageBufferParams Params;
MessageBuffer(const Params *p);
void reanalyzeMessages(Addr addr, Tick current_time);
void reanalyzeAllMessages(Tick current_time);
void stallMessage(Addr addr, Tick current_time);
// TRUE if head of queue timestamp <= SystemTime
bool isReady(Tick current_time) const;
void
delayHead(Tick current_time, Tick delta)
{
MsgPtr m = m_prio_heap.front();
std::pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
std::greater<MsgPtr>());
m_prio_heap.pop_back();
enqueue(m, current_time, delta);
}
bool areNSlotsAvailable(unsigned int n, Tick curTime);
int getPriority() { return m_priority_rank; }
void setPriority(int rank) { m_priority_rank = rank; }
void setConsumer(Consumer* consumer)
{
DPRINTF(RubyQueue, "Setting consumer: %s\n", *consumer);
if (m_consumer != NULL) {
fatal("Trying to connect %s to MessageBuffer %s. \
\n%s already connected. Check the cntrl_id's.\n",
*consumer, *this, *m_consumer);
}
m_consumer = consumer;
}
Consumer* getConsumer() { return m_consumer; }
bool getOrdered() { return m_strict_fifo; }
//! Function for extracting the message at the head of the
//! message queue. The function assumes that the queue is nonempty.
const Message* peek() const;
const MsgPtr &peekMsgPtr() const { return m_prio_heap.front(); }
void enqueue(MsgPtr message, Tick curTime, Tick delta);
//! Updates the delay cycles of the message at the head of the queue,
//! removes it from the queue and returns its total delay.
Tick dequeue(Tick current_time);
void recycle(Tick current_time, Tick recycle_latency);
bool isEmpty() const { return m_prio_heap.size() == 0; }
bool isStallMapEmpty() { return m_stall_msg_map.size() == 0; }
unsigned int getStallMapSize() { return m_stall_msg_map.size(); }
unsigned int getSize(Tick curTime);
void clear();
void print(std::ostream& out) const;
void clearStats() { m_not_avail_count = 0; m_msg_counter = 0; }
void setIncomingLink(int link_id) { m_input_link_id = link_id; }
void setVnet(int net) { m_vnet_id = net; }
void regStats();
// Function for figuring out if any of the messages in the buffer need
// to be updated with the data from the packet.
// Return value indicates the number of messages that were updated.
// This required for debugging the code.
uint32_t functionalWrite(Packet *pkt);
private:
void reanalyzeList(std::list<MsgPtr> &, Tick);
private:
// Data Members (m_ prefix)
//! Consumer to signal a wakeup(), can be NULL
Consumer* m_consumer;
std::vector<MsgPtr> m_prio_heap;
// use a std::map for the stalled messages as this container is
// sorted and ensures a well-defined iteration order
typedef std::map<Addr, std::list<MsgPtr> > StallMsgMapType;
/**
* A map from line addresses to lists of stalled messages for that line.
* If this buffer allows the receiver to stall messages, on a stall
* request, the stalled message is removed from the m_prio_heap and placed
* in the m_stall_msg_map. Messages are held there until the receiver
* requests they be reanalyzed, at which point they are moved back to
* m_prio_heap.
*
* NOTE: The stall map holds messages in the order in which they were
* initially received, and when a line is unblocked, the messages are
* moved back to the m_prio_heap in the same order. This prevents starving
* older requests with younger ones.
*/
StallMsgMapType m_stall_msg_map;
/**
* Current size of the stall map.
* Track the number of messages held in stall map lists. This is used to
* ensure that if the buffer is finite-sized, it blocks further requests
* when the m_prio_heap and m_stall_msg_map contain m_max_size messages.
*/
int m_stall_map_size;
/**
* The maximum capacity. For finite-sized buffers, m_max_size stores a
* number greater than 0 to indicate the maximum allowed number of messages
* in the buffer at any time. To get infinitely-sized buffers, set buffer
* size: m_max_size = 0
*/
const unsigned int m_max_size;
Tick m_time_last_time_size_checked;
unsigned int m_size_last_time_size_checked;
// variables used so enqueues appear to happen immediately, while
// pop happen the next cycle
Tick m_time_last_time_enqueue;
Tick m_time_last_time_pop;
Tick m_last_arrival_time;
unsigned int m_size_at_cycle_start;
unsigned int m_msgs_this_cycle;
Stats::Scalar m_not_avail_count; // count the # of times I didn't have N
// slots available
uint64_t m_msg_counter;
int m_priority_rank;
const bool m_strict_fifo;
const bool m_randomization;
int m_input_link_id;
int m_vnet_id;
};
Tick random_time();
inline std::ostream&
operator<<(std::ostream& out, const MessageBuffer& obj)
{
obj.print(out);
out << std::flush;
return out;
}
#endif // __MEM_RUBY_BUFFERS_MESSAGEBUFFER_HH__