gem5/src/mem/ruby/network/MessageBuffer.cc
Joel Hestness 3a656da1a6 ruby: Make MessageBuffers actually finite sized
When Ruby controllers stall messages in MessageBuffers, the buffer moves those
messages off the priority heap and into a per-address stall map. When buffers
are finite-sized, the test areNSlotsAvailable() only checks the size of the
priority heap, but ignores the stall map, so the map is allowed to grow
unbounded if the controller stalls numerous messages. This patch fixes the
problem by tracking the stall map size and testing the total number of messages
in the buffer appropriately.
2016-12-20 11:38:24 -06:00

404 lines
12 KiB
C++

/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cassert>
#include "base/cprintf.hh"
#include "base/misc.hh"
#include "base/random.hh"
#include "base/stl_helpers.hh"
#include "debug/RubyQueue.hh"
#include "mem/ruby/network/MessageBuffer.hh"
#include "mem/ruby/system/RubySystem.hh"
using namespace std;
using m5::stl_helpers::operator<<;
MessageBuffer::MessageBuffer(const Params *p)
: SimObject(p), m_stall_map_size(0),
m_max_size(p->buffer_size), m_time_last_time_size_checked(0),
m_time_last_time_enqueue(0), m_time_last_time_pop(0),
m_last_arrival_time(0), m_strict_fifo(p->ordered),
m_randomization(p->randomization)
{
m_msg_counter = 0;
m_consumer = NULL;
m_size_last_time_size_checked = 0;
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
m_priority_rank = 0;
m_stall_msg_map.clear();
m_input_link_id = 0;
m_vnet_id = 0;
}
unsigned int
MessageBuffer::getSize(Tick curTime)
{
if (m_time_last_time_size_checked != curTime) {
m_time_last_time_size_checked = curTime;
m_size_last_time_size_checked = m_prio_heap.size();
}
return m_size_last_time_size_checked;
}
bool
MessageBuffer::areNSlotsAvailable(unsigned int n, Tick current_time)
{
// fast path when message buffers have infinite size
if (m_max_size == 0) {
return true;
}
// determine the correct size for the current cycle
// pop operations shouldn't effect the network's visible size
// until schd cycle, but enqueue operations effect the visible
// size immediately
unsigned int current_size = 0;
if (m_time_last_time_pop < current_time) {
// no pops this cycle - heap size is correct
current_size = m_prio_heap.size();
} else {
if (m_time_last_time_enqueue < current_time) {
// no enqueues this cycle - m_size_at_cycle_start is correct
current_size = m_size_at_cycle_start;
} else {
// both pops and enqueues occured this cycle - add new
// enqueued msgs to m_size_at_cycle_start
current_size = m_size_at_cycle_start + m_msgs_this_cycle;
}
}
// now compare the new size with our max size
if (current_size + m_stall_map_size + n <= m_max_size) {
return true;
} else {
DPRINTF(RubyQueue, "n: %d, current_size: %d, heap size: %d, "
"m_max_size: %d\n",
n, current_size, m_prio_heap.size(), m_max_size);
m_not_avail_count++;
return false;
}
}
const Message*
MessageBuffer::peek() const
{
DPRINTF(RubyQueue, "Peeking at head of queue.\n");
const Message* msg_ptr = m_prio_heap.front().get();
assert(msg_ptr);
DPRINTF(RubyQueue, "Message: %s\n", (*msg_ptr));
return msg_ptr;
}
// FIXME - move me somewhere else
Tick
random_time()
{
Tick time = 1;
time += random_mt.random(0, 3); // [0...3]
if (random_mt.random(0, 7) == 0) { // 1 in 8 chance
time += 100 + random_mt.random(1, 15); // 100 + [1...15]
}
return time;
}
void
MessageBuffer::enqueue(MsgPtr message, Tick current_time, Tick delta)
{
// record current time incase we have a pop that also adjusts my size
if (m_time_last_time_enqueue < current_time) {
m_msgs_this_cycle = 0; // first msg this cycle
m_time_last_time_enqueue = current_time;
}
m_msg_counter++;
m_msgs_this_cycle++;
// Calculate the arrival time of the message, that is, the first
// cycle the message can be dequeued.
assert(delta > 0);
Tick arrival_time = 0;
if (!RubySystem::getRandomization() || !m_randomization) {
// No randomization
arrival_time = current_time + delta;
} else {
// Randomization - ignore delta
if (m_strict_fifo) {
if (m_last_arrival_time < current_time) {
m_last_arrival_time = current_time;
}
arrival_time = m_last_arrival_time + random_time();
} else {
arrival_time = current_time + random_time();
}
}
// Check the arrival time
assert(arrival_time > current_time);
if (m_strict_fifo) {
if (arrival_time < m_last_arrival_time) {
panic("FIFO ordering violated: %s name: %s current time: %d "
"delta: %d arrival_time: %d last arrival_time: %d\n",
*this, name(), current_time, delta, arrival_time,
m_last_arrival_time);
}
}
// If running a cache trace, don't worry about the last arrival checks
if (!RubySystem::getWarmupEnabled()) {
m_last_arrival_time = arrival_time;
}
// compute the delay cycles and set enqueue time
Message* msg_ptr = message.get();
assert(msg_ptr != NULL);
assert(current_time >= msg_ptr->getLastEnqueueTime() &&
"ensure we aren't dequeued early");
msg_ptr->updateDelayedTicks(current_time);
msg_ptr->setLastEnqueueTime(arrival_time);
msg_ptr->setMsgCounter(m_msg_counter);
// Insert the message into the priority heap
m_prio_heap.push_back(message);
push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
DPRINTF(RubyQueue, "Enqueue arrival_time: %lld, Message: %s\n",
arrival_time, *(message.get()));
// Schedule the wakeup
assert(m_consumer != NULL);
m_consumer->scheduleEventAbsolute(arrival_time);
m_consumer->storeEventInfo(m_vnet_id);
}
Tick
MessageBuffer::dequeue(Tick current_time)
{
DPRINTF(RubyQueue, "Popping\n");
assert(isReady(current_time));
// get MsgPtr of the message about to be dequeued
MsgPtr message = m_prio_heap.front();
// get the delay cycles
message->updateDelayedTicks(current_time);
Tick delay = message->getDelayedTicks();
// record previous size and time so the current buffer size isn't
// adjusted until schd cycle
if (m_time_last_time_pop < current_time) {
m_size_at_cycle_start = m_prio_heap.size();
m_time_last_time_pop = current_time;
}
pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
m_prio_heap.pop_back();
return delay;
}
void
MessageBuffer::clear()
{
m_prio_heap.clear();
m_msg_counter = 0;
m_time_last_time_enqueue = 0;
m_time_last_time_pop = 0;
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
}
void
MessageBuffer::recycle(Tick current_time, Tick recycle_latency)
{
DPRINTF(RubyQueue, "Recycling.\n");
assert(isReady(current_time));
MsgPtr node = m_prio_heap.front();
pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
Tick future_time = current_time + recycle_latency;
node->setLastEnqueueTime(future_time);
m_prio_heap.back() = node;
push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
m_consumer->scheduleEventAbsolute(future_time);
}
void
MessageBuffer::reanalyzeList(list<MsgPtr> &lt, Tick schdTick)
{
while (!lt.empty()) {
m_msg_counter++;
MsgPtr m = lt.front();
m->setLastEnqueueTime(schdTick);
m->setMsgCounter(m_msg_counter);
m_prio_heap.push_back(m);
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MsgPtr>());
m_consumer->scheduleEventAbsolute(schdTick);
lt.pop_front();
}
}
void
MessageBuffer::reanalyzeMessages(Addr addr, Tick current_time)
{
DPRINTF(RubyQueue, "ReanalyzeMessages %#x\n", addr);
assert(m_stall_msg_map.count(addr) > 0);
//
// Put all stalled messages associated with this address back on the
// prio heap. The reanalyzeList call will make sure the consumer is
// scheduled for the current cycle so that the previously stalled messages
// will be observed before any younger messages that may arrive this cycle
//
m_stall_map_size -= m_stall_msg_map[addr].size();
assert(m_stall_map_size >= 0);
reanalyzeList(m_stall_msg_map[addr], current_time);
m_stall_msg_map.erase(addr);
}
void
MessageBuffer::reanalyzeAllMessages(Tick current_time)
{
DPRINTF(RubyQueue, "ReanalyzeAllMessages\n");
//
// Put all stalled messages associated with this address back on the
// prio heap. The reanalyzeList call will make sure the consumer is
// scheduled for the current cycle so that the previously stalled messages
// will be observed before any younger messages that may arrive this cycle.
//
for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
map_iter != m_stall_msg_map.end(); ++map_iter) {
m_stall_map_size -= map_iter->second.size();
assert(m_stall_map_size >= 0);
reanalyzeList(map_iter->second, current_time);
}
m_stall_msg_map.clear();
}
void
MessageBuffer::stallMessage(Addr addr, Tick current_time)
{
DPRINTF(RubyQueue, "Stalling due to %#x\n", addr);
assert(isReady(current_time));
assert(getOffset(addr) == 0);
MsgPtr message = m_prio_heap.front();
dequeue(current_time);
//
// Note: no event is scheduled to analyze the map at a later time.
// Instead the controller is responsible to call reanalyzeMessages when
// these addresses change state.
//
(m_stall_msg_map[addr]).push_back(message);
m_stall_map_size++;
}
void
MessageBuffer::print(ostream& out) const
{
ccprintf(out, "[MessageBuffer: ");
if (m_consumer != NULL) {
ccprintf(out, " consumer-yes ");
}
vector<MsgPtr> copy(m_prio_heap);
sort_heap(copy.begin(), copy.end(), greater<MsgPtr>());
ccprintf(out, "%s] %s", copy, name());
}
bool
MessageBuffer::isReady(Tick current_time) const
{
return ((m_prio_heap.size() > 0) &&
(m_prio_heap.front()->getLastEnqueueTime() <= current_time));
}
void
MessageBuffer::regStats()
{
m_not_avail_count
.name(name() + ".not_avail_count")
.desc("Number of times this buffer did not have N slots available")
.flags(Stats::nozero);
}
uint32_t
MessageBuffer::functionalWrite(Packet *pkt)
{
uint32_t num_functional_writes = 0;
// Check the priority heap and write any messages that may
// correspond to the address in the packet.
for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
Message *msg = m_prio_heap[i].get();
if (msg->functionalWrite(pkt)) {
num_functional_writes++;
}
}
// Check the stall queue and write any messages that may
// correspond to the address in the packet.
for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
map_iter != m_stall_msg_map.end();
++map_iter) {
for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
it != (map_iter->second).end(); ++it) {
Message *msg = (*it).get();
if (msg->functionalWrite(pkt)) {
num_functional_writes++;
}
}
}
return num_functional_writes;
}
MessageBuffer *
MessageBufferParams::create()
{
return new MessageBuffer(this);
}