gem5/src/arch/arm/isa.cc
Andreas Sandberg 3697990c27 arm: Add a model of an ARM PMUv3
This class implements a subset of the ARM PMU v3 specification as
described in the ARMv8 reference manual. It supports most of the
features of the PMU, however the following features are known to be
missing:

 * Event filtering (e.g., from different privilege levels).
 * Access controls (the PMU currently ignores the execution level).
 * The chain counter (event no. 0x1E) is unimplemented.

The PMU itself does not implement any events, it merely provides an
interface for the configuration scripts to hook up probes that drive
events. Configuration scripts should call addEventProbe() to configure
custom events or high-level methods to configure architected
events. The Python implementation of addEventProbe() automatically
delays event type registration until after instantiation.

In order to support CPU switching and some combined counters (e.g.,
memory references synthesized from loads and stores), the PMU allows
multiple probes per event type. When creating a system that switches
between CPU models that share the same PMU, PMU events for all of the
CPU models can be registered with the PMU.

Kudos to Matt Horsnell for the initial gem5 implementation of the PMU.
2014-10-16 05:49:39 -04:00

2040 lines
76 KiB
C++

/*
* Copyright (c) 2010-2014 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
* Ali Saidi
*/
#include "arch/arm/isa.hh"
#include "arch/arm/pmu.hh"
#include "arch/arm/system.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/base.hh"
#include "debug/Arm.hh"
#include "debug/MiscRegs.hh"
#include "params/ArmISA.hh"
#include "sim/faults.hh"
#include "sim/stat_control.hh"
#include "sim/system.hh"
namespace ArmISA
{
/**
* Some registers aliase with others, and therefore need to be translated.
* For each entry:
* The first value is the misc register that is to be looked up
* the second value is the lower part of the translation
* the third the upper part
*/
const struct ISA::MiscRegInitializerEntry
ISA::MiscRegSwitch[miscRegTranslateMax] = {
{MISCREG_CSSELR_EL1, {MISCREG_CSSELR, 0}},
{MISCREG_SCTLR_EL1, {MISCREG_SCTLR, 0}},
{MISCREG_SCTLR_EL2, {MISCREG_HSCTLR, 0}},
{MISCREG_ACTLR_EL1, {MISCREG_ACTLR, 0}},
{MISCREG_ACTLR_EL2, {MISCREG_HACTLR, 0}},
{MISCREG_CPACR_EL1, {MISCREG_CPACR, 0}},
{MISCREG_CPTR_EL2, {MISCREG_HCPTR, 0}},
{MISCREG_HCR_EL2, {MISCREG_HCR, 0}},
{MISCREG_MDCR_EL2, {MISCREG_HDCR, 0}},
{MISCREG_HSTR_EL2, {MISCREG_HSTR, 0}},
{MISCREG_HACR_EL2, {MISCREG_HACR, 0}},
{MISCREG_TTBR0_EL1, {MISCREG_TTBR0, 0}},
{MISCREG_TTBR1_EL1, {MISCREG_TTBR1, 0}},
{MISCREG_TTBR0_EL2, {MISCREG_HTTBR, 0}},
{MISCREG_VTTBR_EL2, {MISCREG_VTTBR, 0}},
{MISCREG_TCR_EL1, {MISCREG_TTBCR, 0}},
{MISCREG_TCR_EL2, {MISCREG_HTCR, 0}},
{MISCREG_VTCR_EL2, {MISCREG_VTCR, 0}},
{MISCREG_AFSR0_EL1, {MISCREG_ADFSR, 0}},
{MISCREG_AFSR1_EL1, {MISCREG_AIFSR, 0}},
{MISCREG_AFSR0_EL2, {MISCREG_HADFSR, 0}},
{MISCREG_AFSR1_EL2, {MISCREG_HAIFSR, 0}},
{MISCREG_ESR_EL2, {MISCREG_HSR, 0}},
{MISCREG_FAR_EL1, {MISCREG_DFAR, MISCREG_IFAR}},
{MISCREG_FAR_EL2, {MISCREG_HDFAR, MISCREG_HIFAR}},
{MISCREG_HPFAR_EL2, {MISCREG_HPFAR, 0}},
{MISCREG_PAR_EL1, {MISCREG_PAR, 0}},
{MISCREG_MAIR_EL1, {MISCREG_PRRR, MISCREG_NMRR}},
{MISCREG_MAIR_EL2, {MISCREG_HMAIR0, MISCREG_HMAIR1}},
{MISCREG_AMAIR_EL1, {MISCREG_AMAIR0, MISCREG_AMAIR1}},
{MISCREG_VBAR_EL1, {MISCREG_VBAR, 0}},
{MISCREG_VBAR_EL2, {MISCREG_HVBAR, 0}},
{MISCREG_CONTEXTIDR_EL1, {MISCREG_CONTEXTIDR, 0}},
{MISCREG_TPIDR_EL0, {MISCREG_TPIDRURW, 0}},
{MISCREG_TPIDRRO_EL0, {MISCREG_TPIDRURO, 0}},
{MISCREG_TPIDR_EL1, {MISCREG_TPIDRPRW, 0}},
{MISCREG_TPIDR_EL2, {MISCREG_HTPIDR, 0}},
{MISCREG_TEECR32_EL1, {MISCREG_TEECR, 0}},
{MISCREG_CNTFRQ_EL0, {MISCREG_CNTFRQ, 0}},
{MISCREG_CNTPCT_EL0, {MISCREG_CNTPCT, 0}},
{MISCREG_CNTVCT_EL0, {MISCREG_CNTVCT, 0}},
{MISCREG_CNTVOFF_EL2, {MISCREG_CNTVOFF, 0}},
{MISCREG_CNTKCTL_EL1, {MISCREG_CNTKCTL, 0}},
{MISCREG_CNTHCTL_EL2, {MISCREG_CNTHCTL, 0}},
{MISCREG_CNTP_TVAL_EL0, {MISCREG_CNTP_TVAL, 0}},
{MISCREG_CNTP_CTL_EL0, {MISCREG_CNTP_CTL, 0}},
{MISCREG_CNTP_CVAL_EL0, {MISCREG_CNTP_CVAL, 0}},
{MISCREG_CNTV_TVAL_EL0, {MISCREG_CNTV_TVAL, 0}},
{MISCREG_CNTV_CTL_EL0, {MISCREG_CNTV_CTL, 0}},
{MISCREG_CNTV_CVAL_EL0, {MISCREG_CNTV_CVAL, 0}},
{MISCREG_CNTHP_TVAL_EL2, {MISCREG_CNTHP_TVAL, 0}},
{MISCREG_CNTHP_CTL_EL2, {MISCREG_CNTHP_CTL, 0}},
{MISCREG_CNTHP_CVAL_EL2, {MISCREG_CNTHP_CVAL, 0}},
{MISCREG_DACR32_EL2, {MISCREG_DACR, 0}},
{MISCREG_IFSR32_EL2, {MISCREG_IFSR, 0}},
{MISCREG_TEEHBR32_EL1, {MISCREG_TEEHBR, 0}},
{MISCREG_SDER32_EL3, {MISCREG_SDER, 0}}
};
ISA::ISA(Params *p)
: SimObject(p),
system(NULL),
pmu(p->pmu),
lookUpMiscReg(NUM_MISCREGS, {0,0})
{
SCTLR sctlr;
sctlr = 0;
miscRegs[MISCREG_SCTLR_RST] = sctlr;
// Hook up a dummy device if we haven't been configured with a
// real PMU. By using a dummy device, we don't need to check that
// the PMU exist every time we try to access a PMU register.
if (!pmu)
pmu = &dummyDevice;
system = dynamic_cast<ArmSystem *>(p->system);
DPRINTFN("ISA system set to: %p %p\n", system, p->system);
// Cache system-level properties
if (FullSystem && system) {
haveSecurity = system->haveSecurity();
haveLPAE = system->haveLPAE();
haveVirtualization = system->haveVirtualization();
haveLargeAsid64 = system->haveLargeAsid64();
physAddrRange64 = system->physAddrRange64();
} else {
haveSecurity = haveLPAE = haveVirtualization = false;
haveLargeAsid64 = false;
physAddrRange64 = 32; // dummy value
}
/** Fill in the miscReg translation table */
for (uint32_t i = 0; i < miscRegTranslateMax; i++) {
struct MiscRegLUTEntry new_entry;
uint32_t select = MiscRegSwitch[i].index;
new_entry = MiscRegSwitch[i].entry;
lookUpMiscReg[select] = new_entry;
}
preUnflattenMiscReg();
clear();
}
const ArmISAParams *
ISA::params() const
{
return dynamic_cast<const Params *>(_params);
}
void
ISA::clear()
{
const Params *p(params());
SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
memset(miscRegs, 0, sizeof(miscRegs));
// Initialize configurable default values
miscRegs[MISCREG_MIDR] = p->midr;
miscRegs[MISCREG_MIDR_EL1] = p->midr;
miscRegs[MISCREG_VPIDR] = p->midr;
if (FullSystem && system->highestELIs64()) {
// Initialize AArch64 state
clear64(p);
return;
}
// Initialize AArch32 state...
CPSR cpsr = 0;
cpsr.mode = MODE_USER;
miscRegs[MISCREG_CPSR] = cpsr;
updateRegMap(cpsr);
SCTLR sctlr = 0;
sctlr.te = (bool) sctlr_rst.te;
sctlr.nmfi = (bool) sctlr_rst.nmfi;
sctlr.v = (bool) sctlr_rst.v;
sctlr.u = 1;
sctlr.xp = 1;
sctlr.rao2 = 1;
sctlr.rao3 = 1;
sctlr.rao4 = 0xf; // SCTLR[6:3]
sctlr.uci = 1;
sctlr.dze = 1;
miscRegs[MISCREG_SCTLR_NS] = sctlr;
miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
miscRegs[MISCREG_HCPTR] = 0;
// Start with an event in the mailbox
miscRegs[MISCREG_SEV_MAILBOX] = 1;
// Separate Instruction and Data TLBs
miscRegs[MISCREG_TLBTR] = 1;
MVFR0 mvfr0 = 0;
mvfr0.advSimdRegisters = 2;
mvfr0.singlePrecision = 2;
mvfr0.doublePrecision = 2;
mvfr0.vfpExceptionTrapping = 0;
mvfr0.divide = 1;
mvfr0.squareRoot = 1;
mvfr0.shortVectors = 1;
mvfr0.roundingModes = 1;
miscRegs[MISCREG_MVFR0] = mvfr0;
MVFR1 mvfr1 = 0;
mvfr1.flushToZero = 1;
mvfr1.defaultNaN = 1;
mvfr1.advSimdLoadStore = 1;
mvfr1.advSimdInteger = 1;
mvfr1.advSimdSinglePrecision = 1;
mvfr1.advSimdHalfPrecision = 1;
mvfr1.vfpHalfPrecision = 1;
miscRegs[MISCREG_MVFR1] = mvfr1;
// Reset values of PRRR and NMRR are implementation dependent
// @todo: PRRR and NMRR in secure state?
miscRegs[MISCREG_PRRR_NS] =
(1 << 19) | // 19
(0 << 18) | // 18
(0 << 17) | // 17
(1 << 16) | // 16
(2 << 14) | // 15:14
(0 << 12) | // 13:12
(2 << 10) | // 11:10
(2 << 8) | // 9:8
(2 << 6) | // 7:6
(2 << 4) | // 5:4
(1 << 2) | // 3:2
0; // 1:0
miscRegs[MISCREG_NMRR_NS] =
(1 << 30) | // 31:30
(0 << 26) | // 27:26
(0 << 24) | // 25:24
(3 << 22) | // 23:22
(2 << 20) | // 21:20
(0 << 18) | // 19:18
(0 << 16) | // 17:16
(1 << 14) | // 15:14
(0 << 12) | // 13:12
(2 << 10) | // 11:10
(0 << 8) | // 9:8
(3 << 6) | // 7:6
(2 << 4) | // 5:4
(0 << 2) | // 3:2
0; // 1:0
miscRegs[MISCREG_CPACR] = 0;
miscRegs[MISCREG_ID_PFR0] = p->id_pfr0;
miscRegs[MISCREG_ID_PFR1] = p->id_pfr1;
miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
miscRegs[MISCREG_FPSID] = p->fpsid;
if (haveLPAE) {
TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
ttbcr.eae = 0;
miscRegs[MISCREG_TTBCR_NS] = ttbcr;
// Enforce consistency with system-level settings
miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
}
if (haveSecurity) {
miscRegs[MISCREG_SCTLR_S] = sctlr;
miscRegs[MISCREG_SCR] = 0;
miscRegs[MISCREG_VBAR_S] = 0;
} else {
// we're always non-secure
miscRegs[MISCREG_SCR] = 1;
}
//XXX We need to initialize the rest of the state.
}
void
ISA::clear64(const ArmISAParams *p)
{
CPSR cpsr = 0;
Addr rvbar = system->resetAddr64();
switch (system->highestEL()) {
// Set initial EL to highest implemented EL using associated stack
// pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
// value
case EL3:
cpsr.mode = MODE_EL3H;
miscRegs[MISCREG_RVBAR_EL3] = rvbar;
break;
case EL2:
cpsr.mode = MODE_EL2H;
miscRegs[MISCREG_RVBAR_EL2] = rvbar;
break;
case EL1:
cpsr.mode = MODE_EL1H;
miscRegs[MISCREG_RVBAR_EL1] = rvbar;
break;
default:
panic("Invalid highest implemented exception level");
break;
}
// Initialize rest of CPSR
cpsr.daif = 0xf; // Mask all interrupts
cpsr.ss = 0;
cpsr.il = 0;
miscRegs[MISCREG_CPSR] = cpsr;
updateRegMap(cpsr);
// Initialize other control registers
miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
if (haveSecurity) {
miscRegs[MISCREG_SCTLR_EL3] = 0x30c50870;
miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
// @todo: uncomment this to enable Virtualization
// } else if (haveVirtualization) {
// miscRegs[MISCREG_SCTLR_EL2] = 0x30c50870;
} else {
miscRegs[MISCREG_SCTLR_EL1] = 0x30c50870;
// Always non-secure
miscRegs[MISCREG_SCR_EL3] = 1;
}
// Initialize configurable id registers
miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
miscRegs[MISCREG_ID_AA64DFR0_EL1] =
(p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
(p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
miscRegs[MISCREG_ID_AA64PFR0_EL1] = p->id_aa64pfr0_el1;
miscRegs[MISCREG_ID_AA64PFR1_EL1] = p->id_aa64pfr1_el1;
miscRegs[MISCREG_ID_DFR0_EL1] =
(p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
// Enforce consistency with system-level settings...
// EL3
// (no AArch32/64 interprocessing support for now)
miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
haveSecurity ? 0x1 : 0x0);
// EL2
// (no AArch32/64 interprocessing support for now)
miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
haveVirtualization ? 0x1 : 0x0);
// Large ASID support
miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
haveLargeAsid64 ? 0x2 : 0x0);
// Physical address size
miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
encodePhysAddrRange64(physAddrRange64));
}
MiscReg
ISA::readMiscRegNoEffect(int misc_reg) const
{
assert(misc_reg < NumMiscRegs);
int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64
// registers are left unchanged
MiscReg val;
if (lookUpMiscReg[flat_idx].lower == 0 || flat_idx == MISCREG_SPSR
|| flat_idx == MISCREG_SCTLR_EL1) {
if (flat_idx == MISCREG_SPSR)
flat_idx = flattenMiscIndex(MISCREG_SPSR);
if (flat_idx == MISCREG_SCTLR_EL1)
flat_idx = flattenMiscIndex(MISCREG_SCTLR);
val = miscRegs[flat_idx];
} else
if (lookUpMiscReg[flat_idx].upper > 0)
val = ((miscRegs[lookUpMiscReg[flat_idx].lower] & mask(32))
| (miscRegs[lookUpMiscReg[flat_idx].upper] << 32));
else
val = miscRegs[lookUpMiscReg[flat_idx].lower];
return val;
}
MiscReg
ISA::readMiscReg(int misc_reg, ThreadContext *tc)
{
CPSR cpsr = 0;
PCState pc = 0;
SCR scr = 0;
if (misc_reg == MISCREG_CPSR) {
cpsr = miscRegs[misc_reg];
pc = tc->pcState();
cpsr.j = pc.jazelle() ? 1 : 0;
cpsr.t = pc.thumb() ? 1 : 0;
return cpsr;
}
#ifndef NDEBUG
if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
warn("Unimplemented system register %s read.\n",
miscRegName[misc_reg]);
else
panic("Unimplemented system register %s read.\n",
miscRegName[misc_reg]);
}
#endif
switch (unflattenMiscReg(misc_reg)) {
case MISCREG_HCR:
{
if (!haveVirtualization)
return 0;
else
return readMiscRegNoEffect(MISCREG_HCR);
}
case MISCREG_CPACR:
{
const uint32_t ones = (uint32_t)(-1);
CPACR cpacrMask = 0;
// Only cp10, cp11, and ase are implemented, nothing else should
// be readable? (straight copy from the write code)
cpacrMask.cp10 = ones;
cpacrMask.cp11 = ones;
cpacrMask.asedis = ones;
// Security Extensions may limit the readability of CPACR
if (haveSecurity) {
scr = readMiscRegNoEffect(MISCREG_SCR);
cpsr = readMiscRegNoEffect(MISCREG_CPSR);
if (scr.ns && (cpsr.mode != MODE_MON)) {
NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
// NB: Skipping the full loop, here
if (!nsacr.cp10) cpacrMask.cp10 = 0;
if (!nsacr.cp11) cpacrMask.cp11 = 0;
}
}
MiscReg val = readMiscRegNoEffect(MISCREG_CPACR);
val &= cpacrMask;
DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
miscRegName[misc_reg], val);
return val;
}
case MISCREG_MPIDR:
cpsr = readMiscRegNoEffect(MISCREG_CPSR);
scr = readMiscRegNoEffect(MISCREG_SCR);
if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
return getMPIDR(system, tc);
} else {
return readMiscReg(MISCREG_VMPIDR, tc);
}
break;
case MISCREG_MPIDR_EL1:
// @todo in the absence of v8 virtualization support just return MPIDR_EL1
return getMPIDR(system, tc) & 0xffffffff;
case MISCREG_VMPIDR:
// top bit defined as RES1
return readMiscRegNoEffect(misc_reg) | 0x80000000;
case MISCREG_ID_AFR0: // not implemented, so alias MIDR
case MISCREG_REVIDR: // not implemented, so alias MIDR
case MISCREG_MIDR:
cpsr = readMiscRegNoEffect(MISCREG_CPSR);
scr = readMiscRegNoEffect(MISCREG_SCR);
if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
return readMiscRegNoEffect(misc_reg);
} else {
return readMiscRegNoEffect(MISCREG_VPIDR);
}
break;
case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
case MISCREG_AIDR: // AUX ID set to 0
case MISCREG_TCMTR: // No TCM's
return 0;
case MISCREG_CLIDR:
warn_once("The clidr register always reports 0 caches.\n");
warn_once("clidr LoUIS field of 0b001 to match current "
"ARM implementations.\n");
return 0x00200000;
case MISCREG_CCSIDR:
warn_once("The ccsidr register isn't implemented and "
"always reads as 0.\n");
break;
case MISCREG_CTR:
{
//all caches have the same line size in gem5
//4 byte words in ARM
unsigned lineSizeWords =
tc->getSystemPtr()->cacheLineSize() / 4;
unsigned log2LineSizeWords = 0;
while (lineSizeWords >>= 1) {
++log2LineSizeWords;
}
CTR ctr = 0;
//log2 of minimun i-cache line size (words)
ctr.iCacheLineSize = log2LineSizeWords;
//b11 - gem5 uses pipt
ctr.l1IndexPolicy = 0x3;
//log2 of minimum d-cache line size (words)
ctr.dCacheLineSize = log2LineSizeWords;
//log2 of max reservation size (words)
ctr.erg = log2LineSizeWords;
//log2 of max writeback size (words)
ctr.cwg = log2LineSizeWords;
//b100 - gem5 format is ARMv7
ctr.format = 0x4;
return ctr;
}
case MISCREG_ACTLR:
warn("Not doing anything for miscreg ACTLR\n");
break;
case MISCREG_PMXEVTYPER_PMCCFILTR:
case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
case MISCREG_PMCR ... MISCREG_PMOVSSET:
return pmu->readMiscReg(misc_reg);
case MISCREG_CPSR_Q:
panic("shouldn't be reading this register seperately\n");
case MISCREG_FPSCR_QC:
return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
case MISCREG_FPSCR_EXC:
return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
case MISCREG_FPSR:
{
const uint32_t ones = (uint32_t)(-1);
FPSCR fpscrMask = 0;
fpscrMask.ioc = ones;
fpscrMask.dzc = ones;
fpscrMask.ofc = ones;
fpscrMask.ufc = ones;
fpscrMask.ixc = ones;
fpscrMask.idc = ones;
fpscrMask.qc = ones;
fpscrMask.v = ones;
fpscrMask.c = ones;
fpscrMask.z = ones;
fpscrMask.n = ones;
return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
}
case MISCREG_FPCR:
{
const uint32_t ones = (uint32_t)(-1);
FPSCR fpscrMask = 0;
fpscrMask.ioe = ones;
fpscrMask.dze = ones;
fpscrMask.ofe = ones;
fpscrMask.ufe = ones;
fpscrMask.ixe = ones;
fpscrMask.ide = ones;
fpscrMask.len = ones;
fpscrMask.stride = ones;
fpscrMask.rMode = ones;
fpscrMask.fz = ones;
fpscrMask.dn = ones;
fpscrMask.ahp = ones;
return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
}
case MISCREG_NZCV:
{
CPSR cpsr = 0;
cpsr.nz = tc->readCCReg(CCREG_NZ);
cpsr.c = tc->readCCReg(CCREG_C);
cpsr.v = tc->readCCReg(CCREG_V);
return cpsr;
}
case MISCREG_DAIF:
{
CPSR cpsr = 0;
cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
return cpsr;
}
case MISCREG_SP_EL0:
{
return tc->readIntReg(INTREG_SP0);
}
case MISCREG_SP_EL1:
{
return tc->readIntReg(INTREG_SP1);
}
case MISCREG_SP_EL2:
{
return tc->readIntReg(INTREG_SP2);
}
case MISCREG_SPSEL:
{
return miscRegs[MISCREG_CPSR] & 0x1;
}
case MISCREG_CURRENTEL:
{
return miscRegs[MISCREG_CPSR] & 0xc;
}
case MISCREG_L2CTLR:
{
// mostly unimplemented, just set NumCPUs field from sim and return
L2CTLR l2ctlr = 0;
// b00:1CPU to b11:4CPUs
l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
return l2ctlr;
}
case MISCREG_DBGDIDR:
/* For now just implement the version number.
* ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
*/
return 0x5 << 16;
case MISCREG_DBGDSCRint:
return 0;
case MISCREG_ISR:
return tc->getCpuPtr()->getInterruptController()->getISR(
readMiscRegNoEffect(MISCREG_HCR),
readMiscRegNoEffect(MISCREG_CPSR),
readMiscRegNoEffect(MISCREG_SCR));
case MISCREG_ISR_EL1:
return tc->getCpuPtr()->getInterruptController()->getISR(
readMiscRegNoEffect(MISCREG_HCR_EL2),
readMiscRegNoEffect(MISCREG_CPSR),
readMiscRegNoEffect(MISCREG_SCR_EL3));
case MISCREG_DCZID_EL0:
return 0x04; // DC ZVA clear 64-byte chunks
case MISCREG_HCPTR:
{
MiscReg val = readMiscRegNoEffect(misc_reg);
// The trap bit associated with CP14 is defined as RAZ
val &= ~(1 << 14);
// If a CP bit in NSACR is 0 then the corresponding bit in
// HCPTR is RAO/WI
bool secure_lookup = haveSecurity &&
inSecureState(readMiscRegNoEffect(MISCREG_SCR),
readMiscRegNoEffect(MISCREG_CPSR));
if (!secure_lookup) {
MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR);
val |= (mask ^ 0x7FFF) & 0xBFFF;
}
// Set the bits for unimplemented coprocessors to RAO/WI
val |= 0x33FF;
return (val);
}
case MISCREG_HDFAR: // alias for secure DFAR
return readMiscRegNoEffect(MISCREG_DFAR_S);
case MISCREG_HIFAR: // alias for secure IFAR
return readMiscRegNoEffect(MISCREG_IFAR_S);
case MISCREG_HVBAR: // bottom bits reserved
return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0;
case MISCREG_SCTLR: // Some bits hardwired
// The FI field (bit 21) is common between S/NS versions of the register
return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
(readMiscRegNoEffect(misc_reg) & 0x72DD39FF) | 0x00C00818; // V8 SCTLR
case MISCREG_SCTLR_EL1:
// The FI field (bit 21) is common between S/NS versions of the register
return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
(readMiscRegNoEffect(misc_reg) & 0x37DDDBFF) | 0x30D00800; // V8 SCTLR_EL1
case MISCREG_SCTLR_EL3:
// The FI field (bit 21) is common between S/NS versions of the register
return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
(readMiscRegNoEffect(misc_reg) & 0x32CD183F) | 0x30C50830; // V8 SCTLR_EL3
case MISCREG_HSCTLR: // FI comes from SCTLR
{
uint32_t mask = 1 << 27;
return (readMiscRegNoEffect(MISCREG_HSCTLR) & ~mask) |
(readMiscRegNoEffect(MISCREG_SCTLR) & mask);
}
case MISCREG_SCR:
{
CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
if (cpsr.width) {
return readMiscRegNoEffect(MISCREG_SCR);
} else {
return readMiscRegNoEffect(MISCREG_SCR_EL3);
}
}
// Generic Timer registers
case MISCREG_CNTFRQ:
case MISCREG_CNTFRQ_EL0:
inform_once("Read CNTFREQ_EL0 frequency\n");
return getSystemCounter(tc)->freq();
case MISCREG_CNTPCT:
case MISCREG_CNTPCT_EL0:
return getSystemCounter(tc)->value();
case MISCREG_CNTVCT:
return getSystemCounter(tc)->value();
case MISCREG_CNTVCT_EL0:
return getSystemCounter(tc)->value();
case MISCREG_CNTP_CVAL:
case MISCREG_CNTP_CVAL_EL0:
return getArchTimer(tc, tc->cpuId())->compareValue();
case MISCREG_CNTP_TVAL:
case MISCREG_CNTP_TVAL_EL0:
return getArchTimer(tc, tc->cpuId())->timerValue();
case MISCREG_CNTP_CTL:
case MISCREG_CNTP_CTL_EL0:
return getArchTimer(tc, tc->cpuId())->control();
// PL1 phys. timer, secure
// AArch64
// case MISCREG_CNTPS_CVAL_EL1:
// case MISCREG_CNTPS_TVAL_EL1:
// case MISCREG_CNTPS_CTL_EL1:
// PL2 phys. timer, non-secure
// AArch32
// case MISCREG_CNTHCTL:
// case MISCREG_CNTHP_CVAL:
// case MISCREG_CNTHP_TVAL:
// case MISCREG_CNTHP_CTL:
// AArch64
// case MISCREG_CNTHCTL_EL2:
// case MISCREG_CNTHP_CVAL_EL2:
// case MISCREG_CNTHP_TVAL_EL2:
// case MISCREG_CNTHP_CTL_EL2:
// Virtual timer
// AArch32
// case MISCREG_CNTV_CVAL:
// case MISCREG_CNTV_TVAL:
// case MISCREG_CNTV_CTL:
// AArch64
// case MISCREG_CNTV_CVAL_EL2:
// case MISCREG_CNTV_TVAL_EL2:
// case MISCREG_CNTV_CTL_EL2:
default:
break;
}
return readMiscRegNoEffect(misc_reg);
}
void
ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val)
{
assert(misc_reg < NumMiscRegs);
int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64
// registers are left unchanged
int flat_idx2 = lookUpMiscReg[flat_idx].upper;
if (flat_idx2 > 0) {
miscRegs[lookUpMiscReg[flat_idx].lower] = bits(val, 31, 0);
miscRegs[flat_idx2] = bits(val, 63, 32);
DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
misc_reg, flat_idx, flat_idx2, val);
} else {
if (flat_idx == MISCREG_SPSR)
flat_idx = flattenMiscIndex(MISCREG_SPSR);
else if (flat_idx == MISCREG_SCTLR_EL1)
flat_idx = flattenMiscIndex(MISCREG_SCTLR);
else
flat_idx = (lookUpMiscReg[flat_idx].lower > 0) ?
lookUpMiscReg[flat_idx].lower : flat_idx;
miscRegs[flat_idx] = val;
DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
misc_reg, flat_idx, val);
}
}
void
ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc)
{
MiscReg newVal = val;
int x;
bool secure_lookup;
bool hyp;
System *sys;
ThreadContext *oc;
uint8_t target_el;
uint16_t asid;
SCR scr;
if (misc_reg == MISCREG_CPSR) {
updateRegMap(val);
CPSR old_cpsr = miscRegs[MISCREG_CPSR];
int old_mode = old_cpsr.mode;
CPSR cpsr = val;
if (old_mode != cpsr.mode) {
tc->getITBPtr()->invalidateMiscReg();
tc->getDTBPtr()->invalidateMiscReg();
}
DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
PCState pc = tc->pcState();
pc.nextThumb(cpsr.t);
pc.nextJazelle(cpsr.j);
// Follow slightly different semantics if a CheckerCPU object
// is connected
CheckerCPU *checker = tc->getCheckerCpuPtr();
if (checker) {
tc->pcStateNoRecord(pc);
} else {
tc->pcState(pc);
}
} else {
#ifndef NDEBUG
if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
warn("Unimplemented system register %s write with %#x.\n",
miscRegName[misc_reg], val);
else
panic("Unimplemented system register %s write with %#x.\n",
miscRegName[misc_reg], val);
}
#endif
switch (unflattenMiscReg(misc_reg)) {
case MISCREG_CPACR:
{
const uint32_t ones = (uint32_t)(-1);
CPACR cpacrMask = 0;
// Only cp10, cp11, and ase are implemented, nothing else should
// be writable
cpacrMask.cp10 = ones;
cpacrMask.cp11 = ones;
cpacrMask.asedis = ones;
// Security Extensions may limit the writability of CPACR
if (haveSecurity) {
scr = readMiscRegNoEffect(MISCREG_SCR);
CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
if (scr.ns && (cpsr.mode != MODE_MON)) {
NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
// NB: Skipping the full loop, here
if (!nsacr.cp10) cpacrMask.cp10 = 0;
if (!nsacr.cp11) cpacrMask.cp11 = 0;
}
}
MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR);
newVal &= cpacrMask;
newVal |= old_val & ~cpacrMask;
DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
miscRegName[misc_reg], newVal);
}
break;
case MISCREG_CPACR_EL1:
{
const uint32_t ones = (uint32_t)(-1);
CPACR cpacrMask = 0;
cpacrMask.tta = ones;
cpacrMask.fpen = ones;
newVal &= cpacrMask;
DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
miscRegName[misc_reg], newVal);
}
break;
case MISCREG_CPTR_EL2:
{
const uint32_t ones = (uint32_t)(-1);
CPTR cptrMask = 0;
cptrMask.tcpac = ones;
cptrMask.tta = ones;
cptrMask.tfp = ones;
newVal &= cptrMask;
cptrMask = 0;
cptrMask.res1_13_12_el2 = ones;
cptrMask.res1_9_0_el2 = ones;
newVal |= cptrMask;
DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
miscRegName[misc_reg], newVal);
}
break;
case MISCREG_CPTR_EL3:
{
const uint32_t ones = (uint32_t)(-1);
CPTR cptrMask = 0;
cptrMask.tcpac = ones;
cptrMask.tta = ones;
cptrMask.tfp = ones;
newVal &= cptrMask;
DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
miscRegName[misc_reg], newVal);
}
break;
case MISCREG_CSSELR:
warn_once("The csselr register isn't implemented.\n");
return;
case MISCREG_DC_ZVA_Xt:
warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
return;
case MISCREG_FPSCR:
{
const uint32_t ones = (uint32_t)(-1);
FPSCR fpscrMask = 0;
fpscrMask.ioc = ones;
fpscrMask.dzc = ones;
fpscrMask.ofc = ones;
fpscrMask.ufc = ones;
fpscrMask.ixc = ones;
fpscrMask.idc = ones;
fpscrMask.ioe = ones;
fpscrMask.dze = ones;
fpscrMask.ofe = ones;
fpscrMask.ufe = ones;
fpscrMask.ixe = ones;
fpscrMask.ide = ones;
fpscrMask.len = ones;
fpscrMask.stride = ones;
fpscrMask.rMode = ones;
fpscrMask.fz = ones;
fpscrMask.dn = ones;
fpscrMask.ahp = ones;
fpscrMask.qc = ones;
fpscrMask.v = ones;
fpscrMask.c = ones;
fpscrMask.z = ones;
fpscrMask.n = ones;
newVal = (newVal & (uint32_t)fpscrMask) |
(readMiscRegNoEffect(MISCREG_FPSCR) &
~(uint32_t)fpscrMask);
tc->getDecoderPtr()->setContext(newVal);
}
break;
case MISCREG_FPSR:
{
const uint32_t ones = (uint32_t)(-1);
FPSCR fpscrMask = 0;
fpscrMask.ioc = ones;
fpscrMask.dzc = ones;
fpscrMask.ofc = ones;
fpscrMask.ufc = ones;
fpscrMask.ixc = ones;
fpscrMask.idc = ones;
fpscrMask.qc = ones;
fpscrMask.v = ones;
fpscrMask.c = ones;
fpscrMask.z = ones;
fpscrMask.n = ones;
newVal = (newVal & (uint32_t)fpscrMask) |
(readMiscRegNoEffect(MISCREG_FPSCR) &
~(uint32_t)fpscrMask);
misc_reg = MISCREG_FPSCR;
}
break;
case MISCREG_FPCR:
{
const uint32_t ones = (uint32_t)(-1);
FPSCR fpscrMask = 0;
fpscrMask.ioe = ones;
fpscrMask.dze = ones;
fpscrMask.ofe = ones;
fpscrMask.ufe = ones;
fpscrMask.ixe = ones;
fpscrMask.ide = ones;
fpscrMask.len = ones;
fpscrMask.stride = ones;
fpscrMask.rMode = ones;
fpscrMask.fz = ones;
fpscrMask.dn = ones;
fpscrMask.ahp = ones;
newVal = (newVal & (uint32_t)fpscrMask) |
(readMiscRegNoEffect(MISCREG_FPSCR) &
~(uint32_t)fpscrMask);
misc_reg = MISCREG_FPSCR;
}
break;
case MISCREG_CPSR_Q:
{
assert(!(newVal & ~CpsrMaskQ));
newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
misc_reg = MISCREG_CPSR;
}
break;
case MISCREG_FPSCR_QC:
{
newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
(newVal & FpscrQcMask);
misc_reg = MISCREG_FPSCR;
}
break;
case MISCREG_FPSCR_EXC:
{
newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
(newVal & FpscrExcMask);
misc_reg = MISCREG_FPSCR;
}
break;
case MISCREG_FPEXC:
{
// vfpv3 architecture, section B.6.1 of DDI04068
// bit 29 - valid only if fpexc[31] is 0
const uint32_t fpexcMask = 0x60000000;
newVal = (newVal & fpexcMask) |
(readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
}
break;
case MISCREG_HCR:
{
if (!haveVirtualization)
return;
}
break;
case MISCREG_IFSR:
{
// ARM ARM (ARM DDI 0406C.b) B4.1.96
const uint32_t ifsrMask =
mask(31, 13) | mask(11, 11) | mask(8, 6);
newVal = newVal & ~ifsrMask;
}
break;
case MISCREG_DFSR:
{
// ARM ARM (ARM DDI 0406C.b) B4.1.52
const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
newVal = newVal & ~dfsrMask;
}
break;
case MISCREG_AMAIR0:
case MISCREG_AMAIR1:
{
// ARM ARM (ARM DDI 0406C.b) B4.1.5
// Valid only with LPAE
if (!haveLPAE)
return;
DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
}
break;
case MISCREG_SCR:
tc->getITBPtr()->invalidateMiscReg();
tc->getDTBPtr()->invalidateMiscReg();
break;
case MISCREG_SCTLR:
{
DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
MiscRegIndex sctlr_idx;
scr = readMiscRegNoEffect(MISCREG_SCR);
if (haveSecurity && !scr.ns) {
sctlr_idx = MISCREG_SCTLR_S;
} else {
sctlr_idx = MISCREG_SCTLR_NS;
// The FI field (bit 21) is common between S/NS versions
// of the register, we store this in the secure copy of
// the reg
miscRegs[MISCREG_SCTLR_S] &= ~(1 << 21);
miscRegs[MISCREG_SCTLR_S] |= newVal & (1 << 21);
}
SCTLR sctlr = miscRegs[sctlr_idx];
SCTLR new_sctlr = newVal;
new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
miscRegs[sctlr_idx] = (MiscReg)new_sctlr;
tc->getITBPtr()->invalidateMiscReg();
tc->getDTBPtr()->invalidateMiscReg();
// Check if all CPUs are booted with caches enabled
// so we can stop enforcing coherency of some kernel
// structures manually.
sys = tc->getSystemPtr();
for (x = 0; x < sys->numContexts(); x++) {
oc = sys->getThreadContext(x);
// @todo: double check this for security
SCTLR other_sctlr = oc->readMiscRegNoEffect(MISCREG_SCTLR);
if (!other_sctlr.c && oc->status() != ThreadContext::Halted)
return;
}
for (x = 0; x < sys->numContexts(); x++) {
oc = sys->getThreadContext(x);
oc->getDTBPtr()->allCpusCaching();
oc->getITBPtr()->allCpusCaching();
// If CheckerCPU is connected, need to notify it.
CheckerCPU *checker = oc->getCheckerCpuPtr();
if (checker) {
checker->getDTBPtr()->allCpusCaching();
checker->getITBPtr()->allCpusCaching();
}
}
return;
}
case MISCREG_MIDR:
case MISCREG_ID_PFR0:
case MISCREG_ID_PFR1:
case MISCREG_ID_DFR0:
case MISCREG_ID_MMFR0:
case MISCREG_ID_MMFR1:
case MISCREG_ID_MMFR2:
case MISCREG_ID_MMFR3:
case MISCREG_ID_ISAR0:
case MISCREG_ID_ISAR1:
case MISCREG_ID_ISAR2:
case MISCREG_ID_ISAR3:
case MISCREG_ID_ISAR4:
case MISCREG_ID_ISAR5:
case MISCREG_MPIDR:
case MISCREG_FPSID:
case MISCREG_TLBTR:
case MISCREG_MVFR0:
case MISCREG_MVFR1:
case MISCREG_ID_AA64AFR0_EL1:
case MISCREG_ID_AA64AFR1_EL1:
case MISCREG_ID_AA64DFR0_EL1:
case MISCREG_ID_AA64DFR1_EL1:
case MISCREG_ID_AA64ISAR0_EL1:
case MISCREG_ID_AA64ISAR1_EL1:
case MISCREG_ID_AA64MMFR0_EL1:
case MISCREG_ID_AA64MMFR1_EL1:
case MISCREG_ID_AA64PFR0_EL1:
case MISCREG_ID_AA64PFR1_EL1:
// ID registers are constants.
return;
// TLBI all entries, EL0&1 inner sharable (ignored)
case MISCREG_TLBIALLIS:
case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
assert32(tc);
target_el = 1; // el 0 and 1 are handled together
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
sys = tc->getSystemPtr();
for (x = 0; x < sys->numContexts(); x++) {
oc = sys->getThreadContext(x);
assert(oc->getITBPtr() && oc->getDTBPtr());
oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
// If CheckerCPU is connected, need to notify it of a flush
CheckerCPU *checker = oc->getCheckerCpuPtr();
if (checker) {
checker->getITBPtr()->flushAllSecurity(secure_lookup,
target_el);
checker->getDTBPtr()->flushAllSecurity(secure_lookup,
target_el);
}
}
return;
// TLBI all entries, EL0&1, instruction side
case MISCREG_ITLBIALL:
assert32(tc);
target_el = 1; // el 0 and 1 are handled together
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
tc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
return;
// TLBI all entries, EL0&1, data side
case MISCREG_DTLBIALL:
assert32(tc);
target_el = 1; // el 0 and 1 are handled together
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
tc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
return;
// TLBI based on VA, EL0&1 inner sharable (ignored)
case MISCREG_TLBIMVAIS:
case MISCREG_TLBIMVA:
assert32(tc);
target_el = 1; // el 0 and 1 are handled together
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
sys = tc->getSystemPtr();
for (x = 0; x < sys->numContexts(); x++) {
oc = sys->getThreadContext(x);
assert(oc->getITBPtr() && oc->getDTBPtr());
oc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
bits(newVal, 7,0),
secure_lookup, target_el);
oc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
bits(newVal, 7,0),
secure_lookup, target_el);
CheckerCPU *checker = oc->getCheckerCpuPtr();
if (checker) {
checker->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
bits(newVal, 7,0), secure_lookup, target_el);
checker->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
bits(newVal, 7,0), secure_lookup, target_el);
}
}
return;
// TLBI by ASID, EL0&1, inner sharable
case MISCREG_TLBIASIDIS:
case MISCREG_TLBIASID:
assert32(tc);
target_el = 1; // el 0 and 1 are handled together
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
sys = tc->getSystemPtr();
for (x = 0; x < sys->numContexts(); x++) {
oc = sys->getThreadContext(x);
assert(oc->getITBPtr() && oc->getDTBPtr());
oc->getITBPtr()->flushAsid(bits(newVal, 7,0),
secure_lookup, target_el);
oc->getDTBPtr()->flushAsid(bits(newVal, 7,0),
secure_lookup, target_el);
CheckerCPU *checker = oc->getCheckerCpuPtr();
if (checker) {
checker->getITBPtr()->flushAsid(bits(newVal, 7,0),
secure_lookup, target_el);
checker->getDTBPtr()->flushAsid(bits(newVal, 7,0),
secure_lookup, target_el);
}
}
return;
// TLBI by address, EL0&1, inner sharable (ignored)
case MISCREG_TLBIMVAAIS:
case MISCREG_TLBIMVAA:
assert32(tc);
target_el = 1; // el 0 and 1 are handled together
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
hyp = 0;
tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
return;
// TLBI by address, EL2, hypervisor mode
case MISCREG_TLBIMVAH:
case MISCREG_TLBIMVAHIS:
assert32(tc);
target_el = 1; // aarch32, use hyp bit
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
hyp = 1;
tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
return;
// TLBI by address and asid, EL0&1, instruction side only
case MISCREG_ITLBIMVA:
assert32(tc);
target_el = 1; // el 0 and 1 are handled together
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
tc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
bits(newVal, 7,0), secure_lookup, target_el);
return;
// TLBI by address and asid, EL0&1, data side only
case MISCREG_DTLBIMVA:
assert32(tc);
target_el = 1; // el 0 and 1 are handled together
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
tc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
bits(newVal, 7,0), secure_lookup, target_el);
return;
// TLBI by ASID, EL0&1, instrution side only
case MISCREG_ITLBIASID:
assert32(tc);
target_el = 1; // el 0 and 1 are handled together
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
tc->getITBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
target_el);
return;
// TLBI by ASID EL0&1 data size only
case MISCREG_DTLBIASID:
assert32(tc);
target_el = 1; // el 0 and 1 are handled together
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
tc->getDTBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
target_el);
return;
// Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB
case MISCREG_TLBIALLNSNH:
case MISCREG_TLBIALLNSNHIS:
assert32(tc);
target_el = 1; // el 0 and 1 are handled together
hyp = 0;
tlbiALLN(tc, hyp, target_el);
return;
// TLBI all entries, EL2, hyp,
case MISCREG_TLBIALLH:
case MISCREG_TLBIALLHIS:
assert32(tc);
target_el = 1; // aarch32, use hyp bit
hyp = 1;
tlbiALLN(tc, hyp, target_el);
return;
// AArch64 TLBI: invalidate all entries EL3
case MISCREG_TLBI_ALLE3IS:
case MISCREG_TLBI_ALLE3:
assert64(tc);
target_el = 3;
secure_lookup = true;
tlbiALL(tc, secure_lookup, target_el);
return;
// @todo: uncomment this to enable Virtualization
// case MISCREG_TLBI_ALLE2IS:
// case MISCREG_TLBI_ALLE2:
// TLBI all entries, EL0&1
case MISCREG_TLBI_ALLE1IS:
case MISCREG_TLBI_ALLE1:
// AArch64 TLBI: invalidate all entries, stage 1, current VMID
case MISCREG_TLBI_VMALLE1IS:
case MISCREG_TLBI_VMALLE1:
// AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID
case MISCREG_TLBI_VMALLS12E1IS:
case MISCREG_TLBI_VMALLS12E1:
// @todo: handle VMID and stage 2 to enable Virtualization
assert64(tc);
target_el = 1; // el 0 and 1 are handled together
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
tlbiALL(tc, secure_lookup, target_el);
return;
// AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID
// VAEx(IS) and VALEx(IS) are the same because TLBs only store entries
// from the last level of translation table walks
// @todo: handle VMID to enable Virtualization
// TLBI all entries, EL0&1
case MISCREG_TLBI_VAE3IS_Xt:
case MISCREG_TLBI_VAE3_Xt:
// TLBI by VA, EL3 regime stage 1, last level walk
case MISCREG_TLBI_VALE3IS_Xt:
case MISCREG_TLBI_VALE3_Xt:
assert64(tc);
target_el = 3;
asid = 0xbeef; // does not matter, tlbi is global
secure_lookup = true;
tlbiVA(tc, newVal, asid, secure_lookup, target_el);
return;
// TLBI by VA, EL2
case MISCREG_TLBI_VAE2IS_Xt:
case MISCREG_TLBI_VAE2_Xt:
// TLBI by VA, EL2, stage1 last level walk
case MISCREG_TLBI_VALE2IS_Xt:
case MISCREG_TLBI_VALE2_Xt:
assert64(tc);
target_el = 2;
asid = 0xbeef; // does not matter, tlbi is global
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
tlbiVA(tc, newVal, asid, secure_lookup, target_el);
return;
// TLBI by VA EL1 & 0, stage1, ASID, current VMID
case MISCREG_TLBI_VAE1IS_Xt:
case MISCREG_TLBI_VAE1_Xt:
case MISCREG_TLBI_VALE1IS_Xt:
case MISCREG_TLBI_VALE1_Xt:
assert64(tc);
asid = bits(newVal, 63, 48);
target_el = 1; // el 0 and 1 are handled together
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
tlbiVA(tc, newVal, asid, secure_lookup, target_el);
return;
// AArch64 TLBI: invalidate by ASID, stage 1, current VMID
// @todo: handle VMID to enable Virtualization
case MISCREG_TLBI_ASIDE1IS_Xt:
case MISCREG_TLBI_ASIDE1_Xt:
assert64(tc);
target_el = 1; // el 0 and 1 are handled together
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
sys = tc->getSystemPtr();
for (x = 0; x < sys->numContexts(); x++) {
oc = sys->getThreadContext(x);
assert(oc->getITBPtr() && oc->getDTBPtr());
asid = bits(newVal, 63, 48);
if (haveLargeAsid64)
asid &= mask(8);
oc->getITBPtr()->flushAsid(asid, secure_lookup, target_el);
oc->getDTBPtr()->flushAsid(asid, secure_lookup, target_el);
CheckerCPU *checker = oc->getCheckerCpuPtr();
if (checker) {
checker->getITBPtr()->flushAsid(asid,
secure_lookup, target_el);
checker->getDTBPtr()->flushAsid(asid,
secure_lookup, target_el);
}
}
return;
// AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID
// VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
// entries from the last level of translation table walks
// @todo: handle VMID to enable Virtualization
case MISCREG_TLBI_VAAE1IS_Xt:
case MISCREG_TLBI_VAAE1_Xt:
case MISCREG_TLBI_VAALE1IS_Xt:
case MISCREG_TLBI_VAALE1_Xt:
assert64(tc);
target_el = 1; // el 0 and 1 are handled together
scr = readMiscReg(MISCREG_SCR, tc);
secure_lookup = haveSecurity && !scr.ns;
sys = tc->getSystemPtr();
for (x = 0; x < sys->numContexts(); x++) {
// @todo: extra controls on TLBI broadcast?
oc = sys->getThreadContext(x);
assert(oc->getITBPtr() && oc->getDTBPtr());
Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
oc->getITBPtr()->flushMva(va,
secure_lookup, false, target_el);
oc->getDTBPtr()->flushMva(va,
secure_lookup, false, target_el);
CheckerCPU *checker = oc->getCheckerCpuPtr();
if (checker) {
checker->getITBPtr()->flushMva(va,
secure_lookup, false, target_el);
checker->getDTBPtr()->flushMva(va,
secure_lookup, false, target_el);
}
}
return;
// AArch64 TLBI: invalidate by IPA, stage 2, current VMID
case MISCREG_TLBI_IPAS2LE1IS_Xt:
case MISCREG_TLBI_IPAS2LE1_Xt:
case MISCREG_TLBI_IPAS2E1IS_Xt:
case MISCREG_TLBI_IPAS2E1_Xt:
assert64(tc);
// @todo: implement these as part of Virtualization
warn("Not doing anything for write of miscreg ITLB_IPAS2\n");
return;
case MISCREG_ACTLR:
warn("Not doing anything for write of miscreg ACTLR\n");
break;
case MISCREG_PMXEVTYPER_PMCCFILTR:
case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
case MISCREG_PMCR ... MISCREG_PMOVSSET:
pmu->setMiscReg(misc_reg, newVal);
break;
case MISCREG_HSTR: // TJDBX, now redifined to be RES0
{
HSTR hstrMask = 0;
hstrMask.tjdbx = 1;
newVal &= ~((uint32_t) hstrMask);
break;
}
case MISCREG_HCPTR:
{
// If a CP bit in NSACR is 0 then the corresponding bit in
// HCPTR is RAO/WI. Same applies to NSASEDIS
secure_lookup = haveSecurity &&
inSecureState(readMiscRegNoEffect(MISCREG_SCR),
readMiscRegNoEffect(MISCREG_CPSR));
if (!secure_lookup) {
MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
newVal = (newVal & ~mask) | (oldValue & mask);
}
break;
}
case MISCREG_HDFAR: // alias for secure DFAR
misc_reg = MISCREG_DFAR_S;
break;
case MISCREG_HIFAR: // alias for secure IFAR
misc_reg = MISCREG_IFAR_S;
break;
case MISCREG_ATS1CPR:
case MISCREG_ATS1CPW:
case MISCREG_ATS1CUR:
case MISCREG_ATS1CUW:
case MISCREG_ATS12NSOPR:
case MISCREG_ATS12NSOPW:
case MISCREG_ATS12NSOUR:
case MISCREG_ATS12NSOUW:
case MISCREG_ATS1HR:
case MISCREG_ATS1HW:
{
RequestPtr req = new Request;
unsigned flags = 0;
BaseTLB::Mode mode = BaseTLB::Read;
TLB::ArmTranslationType tranType = TLB::NormalTran;
Fault fault;
switch(misc_reg) {
case MISCREG_ATS1CPR:
flags = TLB::MustBeOne;
tranType = TLB::S1CTran;
mode = BaseTLB::Read;
break;
case MISCREG_ATS1CPW:
flags = TLB::MustBeOne;
tranType = TLB::S1CTran;
mode = BaseTLB::Write;
break;
case MISCREG_ATS1CUR:
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S1CTran;
mode = BaseTLB::Read;
break;
case MISCREG_ATS1CUW:
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S1CTran;
mode = BaseTLB::Write;
break;
case MISCREG_ATS12NSOPR:
if (!haveSecurity)
panic("Security Extensions required for ATS12NSOPR");
flags = TLB::MustBeOne;
tranType = TLB::S1S2NsTran;
mode = BaseTLB::Read;
break;
case MISCREG_ATS12NSOPW:
if (!haveSecurity)
panic("Security Extensions required for ATS12NSOPW");
flags = TLB::MustBeOne;
tranType = TLB::S1S2NsTran;
mode = BaseTLB::Write;
break;
case MISCREG_ATS12NSOUR:
if (!haveSecurity)
panic("Security Extensions required for ATS12NSOUR");
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S1S2NsTran;
mode = BaseTLB::Read;
break;
case MISCREG_ATS12NSOUW:
if (!haveSecurity)
panic("Security Extensions required for ATS12NSOUW");
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S1S2NsTran;
mode = BaseTLB::Write;
break;
case MISCREG_ATS1HR: // only really useful from secure mode.
flags = TLB::MustBeOne;
tranType = TLB::HypMode;
mode = BaseTLB::Read;
break;
case MISCREG_ATS1HW:
flags = TLB::MustBeOne;
tranType = TLB::HypMode;
mode = BaseTLB::Write;
break;
}
// If we're in timing mode then doing the translation in
// functional mode then we're slightly distorting performance
// results obtained from simulations. The translation should be
// done in the same mode the core is running in. NOTE: This
// can't be an atomic translation because that causes problems
// with unexpected atomic snoop requests.
warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
req->setVirt(0, val, 1, flags, Request::funcMasterId,
tc->pcState().pc());
req->setThreadContext(tc->contextId(), tc->threadId());
fault = tc->getDTBPtr()->translateFunctional(req, tc, mode, tranType);
TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
MiscReg newVal;
if (fault == NoFault) {
Addr paddr = req->getPaddr();
if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
newVal = (paddr & mask(39, 12)) |
(tc->getDTBPtr()->getAttr());
} else {
newVal = (paddr & 0xfffff000) |
(tc->getDTBPtr()->getAttr());
}
DPRINTF(MiscRegs,
"MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
val, newVal);
} else {
ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
// Set fault bit and FSR
FSR fsr = armFault->getFsr(tc);
newVal = ((fsr >> 9) & 1) << 11;
if (newVal) {
// LPAE - rearange fault status
newVal |= ((fsr >> 0) & 0x3f) << 1;
} else {
// VMSA - rearange fault status
newVal |= ((fsr >> 0) & 0xf) << 1;
newVal |= ((fsr >> 10) & 0x1) << 5;
newVal |= ((fsr >> 12) & 0x1) << 6;
}
newVal |= 0x1; // F bit
newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
newVal |= armFault->isStage2() ? 0x200 : 0;
DPRINTF(MiscRegs,
"MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
val, fsr, newVal);
}
delete req;
setMiscRegNoEffect(MISCREG_PAR, newVal);
return;
}
case MISCREG_TTBCR:
{
TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
const uint32_t ones = (uint32_t)(-1);
TTBCR ttbcrMask = 0;
TTBCR ttbcrNew = newVal;
// ARM DDI 0406C.b, ARMv7-32
ttbcrMask.n = ones; // T0SZ
if (haveSecurity) {
ttbcrMask.pd0 = ones;
ttbcrMask.pd1 = ones;
}
ttbcrMask.epd0 = ones;
ttbcrMask.irgn0 = ones;
ttbcrMask.orgn0 = ones;
ttbcrMask.sh0 = ones;
ttbcrMask.ps = ones; // T1SZ
ttbcrMask.a1 = ones;
ttbcrMask.epd1 = ones;
ttbcrMask.irgn1 = ones;
ttbcrMask.orgn1 = ones;
ttbcrMask.sh1 = ones;
if (haveLPAE)
ttbcrMask.eae = ones;
if (haveLPAE && ttbcrNew.eae) {
newVal = newVal & ttbcrMask;
} else {
newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
}
}
case MISCREG_TTBR0:
case MISCREG_TTBR1:
{
TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
if (haveLPAE) {
if (ttbcr.eae) {
// ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
// ARMv8 AArch32 bit 63-56 only
uint64_t ttbrMask = mask(63,56) | mask(47,40);
newVal = (newVal & (~ttbrMask));
}
}
}
case MISCREG_CONTEXTIDR:
case MISCREG_PRRR:
case MISCREG_NMRR:
case MISCREG_MAIR0:
case MISCREG_MAIR1:
case MISCREG_DACR:
case MISCREG_VTTBR:
case MISCREG_SCR_EL3:
case MISCREG_SCTLR_EL1:
case MISCREG_SCTLR_EL2:
case MISCREG_SCTLR_EL3:
case MISCREG_TCR_EL1:
case MISCREG_TCR_EL2:
case MISCREG_TCR_EL3:
case MISCREG_TTBR0_EL1:
case MISCREG_TTBR1_EL1:
case MISCREG_TTBR0_EL2:
case MISCREG_TTBR0_EL3:
tc->getITBPtr()->invalidateMiscReg();
tc->getDTBPtr()->invalidateMiscReg();
break;
case MISCREG_NZCV:
{
CPSR cpsr = val;
tc->setCCReg(CCREG_NZ, cpsr.nz);
tc->setCCReg(CCREG_C, cpsr.c);
tc->setCCReg(CCREG_V, cpsr.v);
}
break;
case MISCREG_DAIF:
{
CPSR cpsr = miscRegs[MISCREG_CPSR];
cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
newVal = cpsr;
misc_reg = MISCREG_CPSR;
}
break;
case MISCREG_SP_EL0:
tc->setIntReg(INTREG_SP0, newVal);
break;
case MISCREG_SP_EL1:
tc->setIntReg(INTREG_SP1, newVal);
break;
case MISCREG_SP_EL2:
tc->setIntReg(INTREG_SP2, newVal);
break;
case MISCREG_SPSEL:
{
CPSR cpsr = miscRegs[MISCREG_CPSR];
cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
newVal = cpsr;
misc_reg = MISCREG_CPSR;
}
break;
case MISCREG_CURRENTEL:
{
CPSR cpsr = miscRegs[MISCREG_CPSR];
cpsr.el = (uint8_t) ((CPSR) newVal).el;
newVal = cpsr;
misc_reg = MISCREG_CPSR;
}
break;
case MISCREG_AT_S1E1R_Xt:
case MISCREG_AT_S1E1W_Xt:
case MISCREG_AT_S1E0R_Xt:
case MISCREG_AT_S1E0W_Xt:
case MISCREG_AT_S1E2R_Xt:
case MISCREG_AT_S1E2W_Xt:
case MISCREG_AT_S12E1R_Xt:
case MISCREG_AT_S12E1W_Xt:
case MISCREG_AT_S12E0R_Xt:
case MISCREG_AT_S12E0W_Xt:
case MISCREG_AT_S1E3R_Xt:
case MISCREG_AT_S1E3W_Xt:
{
RequestPtr req = new Request;
unsigned flags = 0;
BaseTLB::Mode mode = BaseTLB::Read;
TLB::ArmTranslationType tranType = TLB::NormalTran;
Fault fault;
switch(misc_reg) {
case MISCREG_AT_S1E1R_Xt:
flags = TLB::MustBeOne;
tranType = TLB::S1CTran;
mode = BaseTLB::Read;
break;
case MISCREG_AT_S1E1W_Xt:
flags = TLB::MustBeOne;
tranType = TLB::S1CTran;
mode = BaseTLB::Write;
break;
case MISCREG_AT_S1E0R_Xt:
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S1CTran;
mode = BaseTLB::Read;
break;
case MISCREG_AT_S1E0W_Xt:
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S1CTran;
mode = BaseTLB::Write;
break;
case MISCREG_AT_S1E2R_Xt:
flags = TLB::MustBeOne;
tranType = TLB::HypMode;
mode = BaseTLB::Read;
break;
case MISCREG_AT_S1E2W_Xt:
flags = TLB::MustBeOne;
tranType = TLB::HypMode;
mode = BaseTLB::Write;
break;
case MISCREG_AT_S12E0R_Xt:
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S1S2NsTran;
mode = BaseTLB::Read;
break;
case MISCREG_AT_S12E0W_Xt:
flags = TLB::MustBeOne | TLB::UserMode;
tranType = TLB::S1S2NsTran;
mode = BaseTLB::Write;
break;
case MISCREG_AT_S12E1R_Xt:
flags = TLB::MustBeOne;
tranType = TLB::S1S2NsTran;
mode = BaseTLB::Read;
break;
case MISCREG_AT_S12E1W_Xt:
flags = TLB::MustBeOne;
tranType = TLB::S1S2NsTran;
mode = BaseTLB::Write;
break;
case MISCREG_AT_S1E3R_Xt:
flags = TLB::MustBeOne;
tranType = TLB::HypMode; // There is no TZ mode defined.
mode = BaseTLB::Read;
break;
case MISCREG_AT_S1E3W_Xt:
flags = TLB::MustBeOne;
tranType = TLB::HypMode; // There is no TZ mode defined.
mode = BaseTLB::Write;
break;
}
// If we're in timing mode then doing the translation in
// functional mode then we're slightly distorting performance
// results obtained from simulations. The translation should be
// done in the same mode the core is running in. NOTE: This
// can't be an atomic translation because that causes problems
// with unexpected atomic snoop requests.
warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
req->setVirt(0, val, 1, flags, Request::funcMasterId,
tc->pcState().pc());
req->setThreadContext(tc->contextId(), tc->threadId());
fault = tc->getDTBPtr()->translateFunctional(req, tc, mode,
tranType);
MiscReg newVal;
if (fault == NoFault) {
Addr paddr = req->getPaddr();
uint64_t attr = tc->getDTBPtr()->getAttr();
uint64_t attr1 = attr >> 56;
if (!attr1 || attr1 ==0x44) {
attr |= 0x100;
attr &= ~ uint64_t(0x80);
}
newVal = (paddr & mask(47, 12)) | attr;
DPRINTF(MiscRegs,
"MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
val, newVal);
} else {
ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
// Set fault bit and FSR
FSR fsr = armFault->getFsr(tc);
newVal = ((fsr >> 9) & 1) << 11;
// rearange fault status
newVal |= ((fsr >> 0) & 0x3f) << 1;
newVal |= 0x1; // F bit
newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
newVal |= armFault->isStage2() ? 0x200 : 0;
DPRINTF(MiscRegs,
"MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
val, fsr, newVal);
}
delete req;
setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
return;
}
case MISCREG_SPSR_EL3:
case MISCREG_SPSR_EL2:
case MISCREG_SPSR_EL1:
// Force bits 23:21 to 0
newVal = val & ~(0x7 << 21);
break;
case MISCREG_L2CTLR:
warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
miscRegName[misc_reg], uint32_t(val));
break;
// Generic Timer registers
case MISCREG_CNTFRQ:
case MISCREG_CNTFRQ_EL0:
getSystemCounter(tc)->setFreq(val);
break;
case MISCREG_CNTP_CVAL:
case MISCREG_CNTP_CVAL_EL0:
getArchTimer(tc, tc->cpuId())->setCompareValue(val);
break;
case MISCREG_CNTP_TVAL:
case MISCREG_CNTP_TVAL_EL0:
getArchTimer(tc, tc->cpuId())->setTimerValue(val);
break;
case MISCREG_CNTP_CTL:
case MISCREG_CNTP_CTL_EL0:
getArchTimer(tc, tc->cpuId())->setControl(val);
break;
// PL1 phys. timer, secure
// AArch64
case MISCREG_CNTPS_CVAL_EL1:
case MISCREG_CNTPS_TVAL_EL1:
case MISCREG_CNTPS_CTL_EL1:
// PL2 phys. timer, non-secure
// AArch32
case MISCREG_CNTHCTL:
case MISCREG_CNTHP_CVAL:
case MISCREG_CNTHP_TVAL:
case MISCREG_CNTHP_CTL:
// AArch64
case MISCREG_CNTHCTL_EL2:
case MISCREG_CNTHP_CVAL_EL2:
case MISCREG_CNTHP_TVAL_EL2:
case MISCREG_CNTHP_CTL_EL2:
// Virtual timer
// AArch32
case MISCREG_CNTV_CVAL:
case MISCREG_CNTV_TVAL:
case MISCREG_CNTV_CTL:
// AArch64
// case MISCREG_CNTV_CVAL_EL2:
// case MISCREG_CNTV_TVAL_EL2:
// case MISCREG_CNTV_CTL_EL2:
break;
}
}
setMiscRegNoEffect(misc_reg, newVal);
}
void
ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint8_t asid, bool secure_lookup,
uint8_t target_el)
{
if (haveLargeAsid64)
asid &= mask(8);
Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
System *sys = tc->getSystemPtr();
for (int x = 0; x < sys->numContexts(); x++) {
ThreadContext *oc = sys->getThreadContext(x);
assert(oc->getITBPtr() && oc->getDTBPtr());
oc->getITBPtr()->flushMvaAsid(va, asid,
secure_lookup, target_el);
oc->getDTBPtr()->flushMvaAsid(va, asid,
secure_lookup, target_el);
CheckerCPU *checker = oc->getCheckerCpuPtr();
if (checker) {
checker->getITBPtr()->flushMvaAsid(
va, asid, secure_lookup, target_el);
checker->getDTBPtr()->flushMvaAsid(
va, asid, secure_lookup, target_el);
}
}
}
void
ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el)
{
System *sys = tc->getSystemPtr();
for (int x = 0; x < sys->numContexts(); x++) {
ThreadContext *oc = sys->getThreadContext(x);
assert(oc->getITBPtr() && oc->getDTBPtr());
oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
// If CheckerCPU is connected, need to notify it of a flush
CheckerCPU *checker = oc->getCheckerCpuPtr();
if (checker) {
checker->getITBPtr()->flushAllSecurity(secure_lookup,
target_el);
checker->getDTBPtr()->flushAllSecurity(secure_lookup,
target_el);
}
}
}
void
ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el)
{
System *sys = tc->getSystemPtr();
for (int x = 0; x < sys->numContexts(); x++) {
ThreadContext *oc = sys->getThreadContext(x);
assert(oc->getITBPtr() && oc->getDTBPtr());
oc->getITBPtr()->flushAllNs(hyp, target_el);
oc->getDTBPtr()->flushAllNs(hyp, target_el);
CheckerCPU *checker = oc->getCheckerCpuPtr();
if (checker) {
checker->getITBPtr()->flushAllNs(hyp, target_el);
checker->getDTBPtr()->flushAllNs(hyp, target_el);
}
}
}
void
ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp,
uint8_t target_el)
{
System *sys = tc->getSystemPtr();
for (int x = 0; x < sys->numContexts(); x++) {
ThreadContext *oc = sys->getThreadContext(x);
assert(oc->getITBPtr() && oc->getDTBPtr());
oc->getITBPtr()->flushMva(mbits(newVal, 31,12),
secure_lookup, hyp, target_el);
oc->getDTBPtr()->flushMva(mbits(newVal, 31,12),
secure_lookup, hyp, target_el);
CheckerCPU *checker = oc->getCheckerCpuPtr();
if (checker) {
checker->getITBPtr()->flushMva(mbits(newVal, 31,12),
secure_lookup, hyp, target_el);
checker->getDTBPtr()->flushMva(mbits(newVal, 31,12),
secure_lookup, hyp, target_el);
}
}
}
::GenericTimer::SystemCounter *
ISA::getSystemCounter(ThreadContext *tc)
{
::GenericTimer::SystemCounter *cnt = ((ArmSystem *) tc->getSystemPtr())->
getSystemCounter();
if (cnt == NULL) {
panic("System counter not available\n");
}
return cnt;
}
::GenericTimer::ArchTimer *
ISA::getArchTimer(ThreadContext *tc, int cpu_id)
{
::GenericTimer::ArchTimer *timer = ((ArmSystem *) tc->getSystemPtr())->
getArchTimer(cpu_id);
if (timer == NULL) {
panic("Architected timer not available\n");
}
return timer;
}
}
ArmISA::ISA *
ArmISAParams::create()
{
return new ArmISA::ISA(this);
}