No description
3923eec0ef
Should enable implementation of split-phase timing loads with new memory model. May create slight timing differences under FullCPU, as I believe we were not handling software prefetches correctly before when the split MemAcc/Exec model was used. I haven't looked into this in any detail though. arch/alpha/isa/decoder.isa: HwLoadStore format split into separate HwLoad and HwStore formats. Copy instructions now fall under MiscPrefetch format. Mem_write_result is now just write_result in store conditionals. arch/alpha/isa/mem.isa: Split MemAccExecute and LoadStoreExecute templates into separate templates for loads and stores; now that memory operands are handled differently from registers, it's impossible to have a single template serve both. Also unified the handling of "regular" prefetches (loads to r31) and "misc" prefetches (e.g., wh64) under the new scheme. It looks like SW prefetches were not handled correctly in FullCPU up til now, since we generated an execute() method for the outer instruction but didn't generate a proper method for MemAcc::execute() (instead getting a default no-op method for that). arch/alpha/isa/pal.isa: Split HwLoadStore into separate HwLoad and HwStore formats to select proper template (see change to mem.isa in this changeset). arch/isa_parser.py: Stop trying to treat memory operands like register operands, since we never used them in a uniform way anyway, and it made it impossible to do split-phase loads as needed for the new CPU model. Now there's no more 'op_mem_rd', 'op_nonmem_rd', etc.: 'op_rd' just does register operands, and the template code is responsible for formulating the call to the memory system. Right now the only thing exported by InstObjParams is a new attribute 'mem_acc_size' which gives the memory access size in bits, though more attributes can be added if needed. Also moved code in findOperands() method to OperandDescriptorList.__init__(), which is where it belongs. --HG-- extra : convert_revision : 6d53d07e0c5e828455834ded4395fa40f9146a34 |
||
---|---|---|
arch | ||
base | ||
build | ||
configs | ||
cpu | ||
dev | ||
docs | ||
encumbered/cpu/full | ||
kern | ||
python | ||
sim | ||
test | ||
util | ||
Doxyfile | ||
LICENSE | ||
README | ||
RELEASE_NOTES | ||
SConscript |
This is release m5_1.1 of the M5 simulator. This file contains brief "getting started" instructions. For more information, see http://m5.eecs.umich.edu. If you have questions, please send mail to m5sim-users@lists.sourceforge.net. WHAT'S INCLUDED (AND NOT) ------------------------- The basic source release includes these subdirectories: - m5: the simulator itself - m5-test: regression tests - ext: less-common external packages needed to build m5 - alpha-system: source for Alpha console and PALcode To run full-system simulations, you will need compiled console, PALcode, and kernel binaries and one or more disk images. These files are collected in a separate archive, m5_system_1.1.tar.bz2. This file is included on the CD release, or you can download it separately from Sourceforge. M5 supports Linux 2.4/2.6, FreeBSD, and the proprietary Compaq/HP Tru64 version of Unix. We are able to distribute Linux and FreeBSD bootdisks, but we are unable to distribute bootable disk images of Tru64 Unix. If you have a Tru64 license and are interested in obtaining disk images, contact us at m5-dev@eecs.umich.edu. The CD release includes a few extra goodies, such as a tar file containing doxygen-generated HTML documentation (html-docs.tar.gz), a set of Linux source patches (linux_m5-2.6.8.1.diff), and the scons program needed to build M5. If you do not have the CD, the same HTML documentation is available online at http://m5.eecs.umich.edu/docs, the Linux source patches are available at http://m5.eecs.umich.edu/dist/linux_m5-2.6.8.1.diff, and the scons program is available from http://www.scons.org. WHAT'S NEEDED ------------- - GCC version 3.3 or newer - Python 2.3 or newer - SCons 0.96.1 or newer (see http://www.scons.org) WHAT'S RECOMMENDED ------------------ - MySQL (for statistics complex statistics storage/retrieval) - Python-MysqlDB (for statistics analysis) GETTING STARTED --------------- There are two different build targets and three optimizations levels: Target: ------- ALPHA_SE - Syscall emulation simulation ALPHA_FS - Full system simulation Optimization: ------------- m5.debug - debug version of the code with tracing and without optimization m5.opt - optimized version of code with tracing m5.fast - optimized version of the code without tracing and asserts Different targets are built in different subdirectories of m5/build. Binaries with the same target but different optimization levels share the same directory. Note that you can build m5 in any directory you choose;p just configure the target directory using the 'mkbuilddir' script in m5/build. The following steps will build and test the simulator. The variable "$top" refers to the top directory where you've unpacked the files, i.e., the one containing the m5, m5-test, and ext directories. If you have a multiprocessor system, you should give scons a "-j N" argument (like make) to run N jobs in parallel. To build and test the syscall-emulation simulator: cd $top/m5/build scons ALPHA_SE/test/opt/quick This process takes under 10 minutes on a dual 3GHz Xeon system (using the '-j 4' option). To build and test the full-system simulator: 1. Unpack the full-system binaries from m5_system_1.1.tar.bz2. (See above for directions on obtaining this file if you don't have it.) This package includes disk images and kernel, palcode, and console binaries for Linux and FreeBSD. 2. Edit the SYSTEMDIR search path in $top/m5-test/SysPaths.py to include the path to your local copy of the binaries. 3. In $top/m5/build, run "scons ALPHA_FS/test/opt/quick". This process also takes under 10 minutes on a dual 3GHz Xeon system (again using the '-j 4' option).