gem5/base/statistics.cc
Nathan Binkert 368de4109f Sweeping change in the stats package....again...
base/statistics.cc:
    -  Merge the m5 display and simplescalar compatible display functions.
    -  Use functors for the stats printing instead of functions.  This
    gets rid of the very long argument lists and improves clarity.
    -  Fix a bug in binning that caused an invalid allocation to occur.
base/statistics.hh:
    -  Instead of using a compile time variable to choose whether
    to print in ss compat mode, we use a runtime variable.
    This is how we'll choose python output.
    -  There are no more virtual functions in the statistics themselves.
    All virtual functions have been moved into a secondary helper class.
    Every stat has an associated helper class that knows how to access
    certain variables in that stat.
    There is a hash_map from the stat to it's helper class data.  This was
    done because the helper data is only used during setup, stats reset,
    and printing.  All of which happen rarely, and you want to avoid
    any performance hit that you can.
    -  To provide the name(), desc(), etc functions to classes so that the
    user can set various parameters to the stats class, a single class
    containing all of those functions was created.  An odd trick was
    done to actually make this class derive from the stat class because
    a base class with no data actually does end up taking up space.
    -  The detail namespace was removed for now.  I'll put it back when the
    package is not in so much flux.
    -  Standard deviation, and mean were added to all distribution stats.
    -  There are several bugfixes and changes that aren't mentioned
test/Makefile:
    Don't test sim_stats foo.
test/stattest.cc:
    Don't test sim_stats foo.
    Fix bin usage so that it corresponds to the current usage.

--HG--
extra : convert_revision : ce8d9a8d485a84d55799f253d851e83650684170
2003-12-09 13:05:43 -05:00

1038 lines
23 KiB
C++

/*
* Copyright (c) 2003 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <string>
#include <sstream>
#include "base/callback.hh"
#include "base/cprintf.hh"
#include "base/misc.hh"
#include "base/statistics.hh"
#include "base/str.hh"
#include "sim/universe.hh"
#ifdef __M5_NAN
float
__nan()
{
union {
uint32_t ui;
float f;
} nan;
nan.ui = 0x7fc00000;
return nan.f;
}
#endif
#ifdef STAT_DEBUG
static int total_stats = 0;
#endif
using namespace std;
// This is a hack to get this parameter from the old stats package.
namespace Statistics {
bool PrintDescriptions = true;
DisplayMode default_mode = mode_simplescalar;
namespace Database
{
class Data
{
private:
typedef list<StatData *> list_t;
typedef map<void *, StatData *> map_t;
list<MainBin *> bins;
map<const MainBin *, string > bin_names;
list_t binnedStats;
list_t allStats;
list_t printStats;
map_t statMap;
public:
void dump(ostream &stream);
StatData *find(void *stat);
void mapStat(void *stat, StatData *data);
void check();
void reset();
void regBin(MainBin *bin, string name);
void regPrint(void *stat);
};
void
Data::dump(ostream &stream)
{
#ifndef FS_MEASURE
list_t::iterator i = printStats.begin();
list_t::iterator end = printStats.end();
while (i != end) {
StatData *stat = *i;
if (stat->binned())
binnedStats.push_back(stat);
++i;
}
#endif //FS_MEASURE
list<MainBin *>::iterator j = bins.begin();
list<MainBin *>::iterator bins_end=bins.end();
if (!bins.empty()) {
ccprintf(stream, "PRINTING BINNED STATS\n");
while (j != bins_end) {
(*j)->activate();
map<const MainBin *, string>::const_iterator iter;
iter = bin_names.find(*j);
if (iter == bin_names.end())
panic("a binned stat not found in names map!");
ccprintf(stream,"---%s Bin------------\n", (*iter).second);
#ifdef FS_MEASURE
list_t::iterator i = printStats.begin();
list_t::iterator end = printStats.end();
#else
list_t::iterator i = binnedStats.begin();
list_t::iterator end = binnedStats.end();
#endif
while (i != end) {
StatData *stat = *i;
if (stat->dodisplay())
stat->display(stream);
++i;
}
++j;
ccprintf(stream, "---------------------------------\n");
}
#ifndef FS_MEASURE
ccprintf(stream, "**************ALL STATS************\n");
#endif
}
/**
* get bin totals working, then print the stat here (as total), even if
* its' binned. (this is only for the case you selectively bin a few stats
*/
#ifndef FS_MEASURE
list_t::iterator k = printStats.begin();
list_t::iterator endprint = printStats.end();
while (k != endprint) {
StatData *stat = *k;
if (stat->dodisplay() /*&& !stat->binned()*/)
stat->display(stream);
++k;
}
#endif
}
StatData *
Data::find(void *stat)
{
map_t::const_iterator i = statMap.find(stat);
if (i == statMap.end())
return NULL;
return (*i).second;
}
void
Data::check()
{
list_t::iterator i = allStats.begin();
list_t::iterator end = allStats.end();
while (i != end) {
StatData *stat = *i;
assert(stat);
stat->check();
++i;
}
}
void
Data::reset()
{
list_t::iterator i = allStats.begin();
list_t::iterator end = allStats.end();
while (i != end) {
StatData *stat = *i;
stat->reset();
++i;
}
MainBin *orig = MainBin::curBin();
list<MainBin *>::iterator bi = bins.begin();
list<MainBin *>::iterator be = bins.end();
while (bi != be) {
MainBin *bin = *bi;
bin->activate();
i = allStats.begin();
while (i != end) {
StatData *stat = *i;
stat->reset();
++i;
}
++bi;
}
if (orig)
orig->activate();
}
void
Data::mapStat(void *stat, StatData *data)
{
if (statMap.find(stat) != statMap.end())
panic("shouldn't register stat twice!");
allStats.push_back(data);
bool success = (statMap.insert(make_pair(stat, data))).second;
assert(statMap.find(stat) != statMap.end());
assert(success && "this should never fail");
}
void
Data::regBin(MainBin *bin, string name)
{
if (bin_names.find(bin) != bin_names.end())
panic("shouldn't register bin twice");
bins.push_back(bin);
bool success = (bin_names.insert(make_pair(bin,name))).second;
assert(bin_names.find(bin) != bin_names.end());
assert(success && "this should not fail");
cprintf("registering %s\n", name);
}
void
Data::regPrint(void *stat)
{
StatData *data = find(stat);
if (!data->print) {
data->print = true;
list_t::iterator j = printStats.insert(printStats.end(), data);
inplace_merge(printStats.begin(), j,
printStats.end(), StatData::less);
}
}
Data &
StatDB()
{
static Data db;
return db;
}
}
StatData *
DataAccess::find() const
{
return Database::StatDB().find(const_cast<void *>((const void *)this));
}
void
DataAccess::map(StatData *data)
{
Database::StatDB().mapStat(this, data);
}
StatData *
DataAccess::statData()
{
StatData *ptr = find();
assert(ptr);
return ptr;
}
const StatData *
DataAccess::statData() const
{
const StatData *ptr = find();
assert(ptr);
return ptr;
}
void
DataAccess::setInit()
{
statData()->init = true;
}
void
DataAccess::setPrint()
{
Database::StatDB().regPrint(this);
}
StatData::~StatData()
{
}
bool
StatData::less(StatData *stat1, StatData *stat2)
{
const string &name1 = stat1->name;
const string &name2 = stat2->name;
vector<string> v1;
vector<string> v2;
tokenize(v1, name1, '.');
tokenize(v2, name2, '.');
int last = min(v1.size(), v2.size()) - 1;
for (int i = 0; i < last; ++i)
if (v1[i] != v2[i])
return v1[i] < v2[i];
// Special compare for last element.
if (v1[last] == v2[last])
return v1.size() < v2.size();
else
return v1[last] < v2[last];
return false;
}
bool
StatData::check() const
{
if (!init) {
#ifdef STAT_DEBUG
cprintf("this is stat number %d\n",(*i)->number);
#endif
panic("Not all stats have been initialized");
return false;
}
if (print && name.empty()) {
panic("all printable stats must be named");
return false;
}
return true;
}
string
ValueToString(result_t value, DisplayMode mode, int precision)
{
stringstream val;
if (!isnan(value)) {
if (precision != -1)
val.precision(precision);
else if (value == rint(value))
val.precision(0);
val.unsetf(ios::showpoint);
val.setf(ios::fixed);
val << value;
} else {
val << (mode == mode_m5 ? "no value" : "<err: div-0>");
}
return val.str();
}
struct ScalarPrint
{
result_t value;
string name;
string desc;
int precision;
DisplayMode mode;
FormatFlags flags;
result_t pdf;
result_t cdf;
ScalarPrint()
: value(0.0), precision(0), mode(default_mode), flags(0),
pdf(NAN), cdf(NAN)
{}
void operator()(ostream &stream) const;
};
void
ScalarPrint::operator()(ostream &stream) const
{
if (flags & nozero && value == 0.0 ||
flags & nonan && isnan(value))
return;
stringstream pdfstr, cdfstr;
if (!isnan(pdf))
ccprintf(pdfstr, "%.2f%%", pdf * 100.0);
if (!isnan(cdf))
ccprintf(cdfstr, "%.2f%%", cdf * 100.0);
if (mode == mode_simplescalar && flags & __substat) {
ccprintf(stream, "%32s %12s %10s %10s", name,
ValueToString(value, mode, precision),
pdfstr, cdfstr);
} else {
ccprintf(stream, "%-40s %12s %10s %10s", name,
ValueToString(value, mode, precision), pdfstr, cdfstr);
}
if (PrintDescriptions) {
if (!desc.empty())
ccprintf(stream, " # %s", desc);
}
stream << endl;
}
struct VectorPrint
{
string name;
string desc;
vector<string> subnames;
vector<string> subdescs;
int precision;
DisplayMode mode;
FormatFlags flags;
rvec_t vec;
result_t total;
VectorPrint()
: subnames(0), subdescs(0), precision(-1), mode(default_mode),
flags(0), total(NAN)
{}
void operator()(ostream &stream) const;
};
void
VectorPrint::operator()(std::ostream &stream) const
{
int _size = vec.size();
result_t _total = 0.0;
if (flags & (pdf | cdf)) {
for (int i = 0; i < _size; ++i) {
_total += vec[i];
}
}
string base = name + ((mode == mode_simplescalar) ? "_" : "::");
ScalarPrint print;
print.name = name;
print.desc = desc;
print.precision = precision;
print.flags = flags;
bool havesub = !subnames.empty();
if (_size == 1) {
print.value = vec[0];
print(stream);
} else if (mode == mode_m5) {
for (int i = 0; i < _size; ++i) {
if (havesub && (i >= subnames.size() || subnames[i].empty()))
continue;
print.name = base + (havesub ? subnames[i] : to_string(i));
print.desc = subdescs.empty() ? desc : subdescs[i];
print.value = vec[i];
if (_total && (flags & pdf)) {
print.pdf = vec[i] / _total;
print.cdf += print.pdf;
}
print(stream);
}
if (flags & ::Statistics::total) {
print.name = base + "total";
print.desc = desc;
print.value = total;
print(stream);
}
} else {
if (flags & ::Statistics::total) {
print.value = total;
print(stream);
}
result_t _pdf = 0.0;
result_t _cdf = 0.0;
if (flags & dist) {
ccprintf(stream, "%s.start_dist\n", name);
for (int i = 0; i < _size; ++i) {
print.name = havesub ? subnames[i] : to_string(i);
print.desc = subdescs.empty() ? desc : subdescs[i];
print.flags |= __substat;
print.value = vec[i];
if (_total) {
_pdf = vec[i] / _total;
_cdf += _pdf;
}
if (flags & pdf)
print.pdf = _pdf;
if (flags & cdf)
print.cdf = _cdf;
print(stream);
}
ccprintf(stream, "%s.end_dist\n", name);
} else {
for (int i = 0; i < _size; ++i) {
if (havesub && subnames[i].empty())
continue;
print.name = base;
print.name += havesub ? subnames[i] : to_string(i);
print.desc = subdescs.empty() ? desc : subdescs[i];
print.value = vec[i];
if (_total) {
_pdf = vec[i] / _total;
_cdf += _pdf;
} else {
_pdf = _cdf = NAN;
}
if (flags & pdf) {
print.pdf = _pdf;
print.cdf = _cdf;
}
print(stream);
}
}
}
}
struct DistPrint
{
string name;
string desc;
int precision;
DisplayMode mode;
FormatFlags flags;
result_t min_val;
result_t max_val;
result_t underflow;
result_t overflow;
rvec_t vec;
result_t sum;
result_t squares;
result_t samples;
int min;
int max;
int bucket_size;
int size;
bool fancy;
void operator()(ostream &stream) const;
};
void
DistPrint::operator()(ostream &stream) const
{
if (fancy) {
ScalarPrint print;
string base = name + ((mode == mode_m5) ? "::" : "_");
print.precision = precision;
print.flags = flags;
print.desc = desc;
print.name = base + "mean";
print.value = samples ? sum / samples : NAN;
print(stream);
print.name = base + "stdev";
print.value = samples ? sqrt((samples * squares - sum * sum) /
(samples * (samples - 1.0))) : NAN;
print(stream);
print.name = "**Ignore: " + base + "TOT";
print.value = samples;
print(stream);
return;
}
assert(size == vec.size());
result_t total = 0.0;
total += underflow;
for (int i = 0; i < size; ++i)
total += vec[i];
total += overflow;
string base = name + (mode == mode_m5 ? "::" : ".");
ScalarPrint print;
print.desc = (mode == mode_m5) ? desc : "";
print.precision = precision;
print.mode = mode;
print.flags = flags;
if (mode == mode_simplescalar) {
ccprintf(stream, "%-42s", base + "start_dist");
if (PrintDescriptions && !desc.empty())
ccprintf(stream, " # %s", desc);
stream << endl;
}
print.name = base + "samples";
print.value = samples;
print(stream);
print.name = base + "min_value";
print.value = min_val;
print(stream);
if (mode == mode_m5 || underflow > 0.0) {
print.name = base + "underflows";
print.value = underflow;
if (mode == mode_m5 && total) {
print.pdf = underflow / total;
print.cdf += print.pdf;
}
print(stream);
}
if (mode == mode_m5) {
for (int i = 0; i < size; ++i) {
stringstream namestr;
namestr << name;
int low = i * bucket_size + min;
int high = ::min((i + 1) * bucket_size + min - 1, max);
namestr << low;
if (low < high)
namestr << "-" << high;
print.name = namestr.str();
print.value = vec[i];
if (total) {
print.pdf = vec[i] / total;
print.cdf += print.pdf;
}
print(stream);
}
} else {
int _min;
result_t _pdf;
result_t _cdf = 0.0;
print.flags = flags | __substat;
for (int i = 0; i < size; ++i) {
if (flags & nozero && vec[i] == 0.0 ||
flags & nonan && isnan(vec[i]))
continue;
_min = i * bucket_size + min;
_pdf = vec[i] / total * 100.0;
_cdf += _pdf;
print.name = ValueToString(_min, mode, 0);
print.value = vec[i];
print.pdf = (flags & pdf) ? _pdf : NAN;
print.cdf = (flags & cdf) ? _cdf : NAN;
print(stream);
}
print.flags = flags;
if (flags & (pdf || cdf)) {
print.pdf = NAN;
print.cdf = NAN;
}
}
if (mode == mode_m5 || overflow > 0.0) {
print.name = base + "overflows";
print.value = overflow;
if (mode == mode_m5 && total) {
print.pdf = overflow / total;
print.cdf += print.pdf;
}
print(stream);
}
print.pdf = NAN;
print.cdf = NAN;
if (mode != mode_simplescalar) {
print.name = base + "total";
print.value = total;
print(stream);
}
print.name = base + "max_value";
print.value = max_val;
print(stream);
if (mode != mode_simplescalar && samples != 0) {
print.name = base + "mean";
print.value = sum / samples;
print(stream);
print.name = base + "stdev";
print.value = sqrt((samples * squares - sum * sum) /
(samples * (samples - 1.0)));
print(stream);
}
if (mode == mode_simplescalar)
ccprintf(stream, "%send_dist\n\n", base);
}
void
ScalarDataBase::display(ostream &stream) const
{
ScalarPrint print;
print.value = val();
print.name = name;
print.desc = desc;
print.precision = precision;
print.flags = flags;
print(stream);
}
void
VectorDataBase::display(ostream &stream) const
{
int size = this->size();
const_cast<VectorDataBase *>(this)->update();
VectorPrint print;
print.name = name;
print.desc = desc;
print.mode = mode;
print.flags = flags;
print.precision = precision;
print.vec = val();
print.total = total();
for (int i = 0; i < size; ++i) {
if (!subnames[i].empty()) {
print.subnames = subnames;
print.subnames.resize(size);
for (int i = 0; i < size; ++i) {
if (!subnames[i].empty() && !subdescs[i].empty()) {
print.subdescs = subdescs;
print.subdescs.resize(size);
break;
}
}
break;
}
}
print(stream);
}
void
Vector2dDataBase::display(ostream &stream) const
{
const_cast<Vector2dDataBase *>(this)->update();
bool havesub = false;
VectorPrint print;
print.subnames = y_subnames;
print.mode = mode;
print.flags = flags;
print.precision = precision;
if (!subnames.empty()) {
for (int i = 0; i < x; ++i)
if (!subnames[i].empty())
havesub = true;
}
rvec_t tot_vec(y);
result_t super_total = 0.0;
for (int i = 0; i < x; ++i) {
if (havesub && (i >= subnames.size() || subnames[i].empty()))
continue;
int iy = i * y;
rvec_t yvec(y);
result_t total = 0.0;
for (int j = 0; j < y; ++j) {
yvec[j] = vec[iy + j];
tot_vec[j] += yvec[j];
total += yvec[j];
super_total += yvec[j];
}
print.name = name + "_" + (havesub ? subnames[i] : to_string(i));
print.desc = desc;
print.vec = yvec;
print.total = total;
print(stream);
}
if ((flags & ::Statistics::total) && (x > 1)) {
print.name = name;
print.desc = desc;
print.vec = tot_vec;
print.total = super_total;
print(stream);
}
}
void
DistDataBase::display(ostream &stream) const
{
const_cast<DistDataBase *>(this)->update();
DistPrint print;
print.name = name;
print.desc = desc;
print.precision = precision;
print.mode = mode;
print.flags = flags;
print.min_val = data.min_val;
print.max_val = data.max_val;
print.underflow = data.underflow;
print.overflow = data.overflow;
print.vec = data.vec;
print.sum = data.sum;
print.squares = data.squares;
print.samples = data.samples;
print.min = data.min;
print.max = data.max;
print.bucket_size = data.bucket_size;
print.size = data.size;
print.fancy = data.fancy;
print(stream);
}
void
VectorDistDataBase::display(ostream &stream) const
{
const_cast<VectorDistDataBase *>(this)->update();
for (int i = 0; i < size(); ++i) {
DistPrint print;
print.name = name +
(subnames[i].empty() ? ("_" + to_string(i)) : subnames[i]);
print.desc = subdescs[i].empty() ? desc : subdescs[i];
print.precision = precision;
print.mode = mode;
print.flags = flags;
print.min_val = data[i].min_val;
print.max_val = data[i].max_val;
print.underflow = data[i].underflow;
print.overflow = data[i].overflow;
print.vec = data[i].vec;
print.sum = data[i].sum;
print.squares = data[i].squares;
print.samples = data[i].samples;
print.min = data[i].min;
print.max = data[i].max;
print.bucket_size = data[i].bucket_size;
print.size = data[i].size;
print.fancy = data[i].fancy;
print(stream);
}
}
void
FormulaBase::val(rvec_t &vec) const
{
vec = root->val();
}
result_t
FormulaBase::total() const
{
return root->total();
}
size_t
FormulaBase::size() const
{
if (!root)
return 0;
else
return root->size();
}
bool
FormulaBase::binned() const
{
return root->binned();
}
void
FormulaBase::reset()
{
}
bool
FormulaBase::zero() const
{
rvec_t vec;
val(vec);
for (int i = 0; i < vec.size(); ++i)
if (vec[i] != 0.0)
return false;
return true;
}
void
FormulaBase::update(StatData *)
{
}
Formula::Formula()
{
setInit();
}
Formula::Formula(Temp r)
{
root = r;
assert(size());
}
const Formula &
Formula::operator=(Temp r)
{
assert(!root && "Can't change formulas");
root = r;
assert(size());
return *this;
}
const Formula &
Formula::operator+=(Temp r)
{
if (root)
root = NodePtr(new BinaryNode<std::plus<result_t> >(root, r));
else
root = r;
assert(size());
return *this;
}
MainBin::MainBin(const string &name)
: _name(name), mem(NULL), memsize(-1)
{
Database::StatDB().regBin(this, name);
}
MainBin::~MainBin()
{
if (mem)
delete [] mem;
}
char *
MainBin::memory(off_t off)
{
if (memsize == -1)
memsize = CeilPow2((size_t) offset());
if (!mem) {
mem = new char[memsize];
memset(mem, 0, memsize);
}
assert(offset() <= size());
return mem + off;
}
void
check()
{
Database::StatDB().check();
}
void
dump(ostream &stream)
{
Database::StatDB().dump(stream);
}
CallbackQueue resetQueue;
void
RegResetCallback(Callback *cb)
{
resetQueue.add(cb);
}
void
reset()
{
Database::StatDB().reset();
resetQueue.process();
}
} // namespace Statistics