gem5/src/mem/request.hh
Andreas Sandberg 48281375ee mem, cpu: Add a separate flag for strictly ordered memory
The Request::UNCACHEABLE flag currently has two different
functions. The first, and obvious, function is to prevent the memory
system from caching data in the request. The second function is to
prevent reordering and speculation in CPU models.

This changeset gives the order/speculation requirement a separate flag
(Request::STRICT_ORDER). This flag prevents CPU models from doing the
following optimizations:

    * Speculation: CPU models are not allowed to issue speculative
      loads.

    * Write combining: CPU models and caches are not allowed to merge
      writes to the same cache line.

Note: The memory system may still reorder accesses unless the
UNCACHEABLE flag is set. It is therefore expected that the
STRICT_ORDER flag is combined with the UNCACHEABLE flag to prevent
this behavior.
2015-05-05 03:22:33 -04:00

651 lines
20 KiB
C++

/*
* Copyright (c) 2012-2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ron Dreslinski
* Steve Reinhardt
* Ali Saidi
*/
/**
* @file
* Declaration of a request, the overall memory request consisting of
the parts of the request that are persistent throughout the transaction.
*/
#ifndef __MEM_REQUEST_HH__
#define __MEM_REQUEST_HH__
#include <cassert>
#include <climits>
#include "base/flags.hh"
#include "base/misc.hh"
#include "base/types.hh"
#include "sim/core.hh"
/**
* Special TaskIds that are used for per-context-switch stats dumps
* and Cache Occupancy. Having too many tasks seems to be a problem
* with vector stats. 1024 seems to be a reasonable number that
* doesn't cause a problem with stats and is large enough to realistic
* benchmarks (Linux/Android boot, BBench, etc.)
*/
namespace ContextSwitchTaskId {
enum TaskId {
MaxNormalTaskId = 1021, /* Maximum number of normal tasks */
Prefetcher = 1022, /* For cache lines brought in by prefetcher */
DMA = 1023, /* Mostly Table Walker */
Unknown = 1024,
NumTaskId
};
}
class Request;
typedef Request* RequestPtr;
typedef uint16_t MasterID;
class Request
{
public:
typedef uint32_t FlagsType;
typedef uint8_t ArchFlagsType;
typedef ::Flags<FlagsType> Flags;
/**
* Architecture specific flags.
*
* These bits int the flag field are reserved for
* architecture-specific code. For example, SPARC uses them to
* represent ASIs.
*/
static const FlagsType ARCH_BITS = 0x000000FF;
/** The request was an instruction fetch. */
static const FlagsType INST_FETCH = 0x00000100;
/** The virtual address is also the physical address. */
static const FlagsType PHYSICAL = 0x00000200;
/**
* The request is to an uncacheable address.
*
* @note Uncacheable accesses may be reordered by CPU models. The
* STRICT_ORDER flag should be set if such reordering is
* undesirable.
*/
static const FlagsType UNCACHEABLE = 0x00000400;
/**
* The request is required to be strictly ordered by <i>CPU
* models</i> and is non-speculative.
*
* A strictly ordered request is guaranteed to never be re-ordered
* or executed speculatively by a CPU model. The memory system may
* still reorder requests in caches unless the UNCACHEABLE flag is
* set as well.
*/
static const FlagsType STRICT_ORDER = 0x00000800;
/** This request is to a memory mapped register. */
static const FlagsType MMAPPED_IPR = 0x00002000;
/** This request is a clear exclusive. */
static const FlagsType CLEAR_LL = 0x00004000;
/** This request is made in privileged mode. */
static const FlagsType PRIVILEGED = 0x00008000;
/** This is a write that is targeted and zeroing an entire cache block.
* There is no need for a read/modify/write
*/
static const FlagsType CACHE_BLOCK_ZERO = 0x00010000;
/** The request should not cause a memory access. */
static const FlagsType NO_ACCESS = 0x00080000;
/** This request will lock or unlock the accessed memory. When used with
* a load, the access locks the particular chunk of memory. When used
* with a store, it unlocks. The rule is that locked accesses have to be
* made up of a locked load, some operation on the data, and then a locked
* store.
*/
static const FlagsType LOCKED_RMW = 0x00100000;
/** The request is a Load locked/store conditional. */
static const FlagsType LLSC = 0x00200000;
/** This request is for a memory swap. */
static const FlagsType MEM_SWAP = 0x00400000;
static const FlagsType MEM_SWAP_COND = 0x00800000;
/** The request is a prefetch. */
static const FlagsType PREFETCH = 0x01000000;
/** The request should be prefetched into the exclusive state. */
static const FlagsType PF_EXCLUSIVE = 0x02000000;
/** The request should be marked as LRU. */
static const FlagsType EVICT_NEXT = 0x04000000;
/** The request should be handled by the generic IPR code (only
* valid together with MMAPPED_IPR) */
static const FlagsType GENERIC_IPR = 0x08000000;
/** The request targets the secure memory space. */
static const FlagsType SECURE = 0x10000000;
/** The request is a page table walk */
static const FlagsType PT_WALK = 0x20000000;
/** These flags are *not* cleared when a Request object is reused
(assigned a new address). */
static const FlagsType STICKY_FLAGS = INST_FETCH;
/** Request Ids that are statically allocated
* @{*/
/** This request id is used for writeback requests by the caches */
static const MasterID wbMasterId = 0;
/** This request id is used for functional requests that don't come from a
* particular device
*/
static const MasterID funcMasterId = 1;
/** This request id is used for message signaled interrupts */
static const MasterID intMasterId = 2;
/** Invalid request id for assertion checking only. It is invalid behavior
* to ever send this id as part of a request.
* @todo C++1x replace with numeric_limits when constexpr is added */
static const MasterID invldMasterId = std::numeric_limits<MasterID>::max();
/** @} */
/** Invalid or unknown Pid. Possible when operating system is not present
* or has not assigned a pid yet */
static const uint32_t invldPid = std::numeric_limits<uint32_t>::max();
private:
typedef uint8_t PrivateFlagsType;
typedef ::Flags<PrivateFlagsType> PrivateFlags;
/** Whether or not the size is valid. */
static const PrivateFlagsType VALID_SIZE = 0x00000001;
/** Whether or not paddr is valid (has been written yet). */
static const PrivateFlagsType VALID_PADDR = 0x00000002;
/** Whether or not the vaddr & asid are valid. */
static const PrivateFlagsType VALID_VADDR = 0x00000004;
/** Whether or not the pc is valid. */
static const PrivateFlagsType VALID_PC = 0x00000010;
/** Whether or not the context ID is valid. */
static const PrivateFlagsType VALID_CONTEXT_ID = 0x00000020;
static const PrivateFlagsType VALID_THREAD_ID = 0x00000040;
/** Whether or not the sc result is valid. */
static const PrivateFlagsType VALID_EXTRA_DATA = 0x00000080;
/** These flags are *not* cleared when a Request object is reused
(assigned a new address). */
static const PrivateFlagsType STICKY_PRIVATE_FLAGS =
VALID_CONTEXT_ID | VALID_THREAD_ID;
private:
/**
* Set up a physical (e.g. device) request in a previously
* allocated Request object.
*/
void
setPhys(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
{
assert(size >= 0);
_paddr = paddr;
_size = size;
_time = time;
_masterId = mid;
_flags.clear(~STICKY_FLAGS);
_flags.set(flags);
privateFlags.clear(~STICKY_PRIVATE_FLAGS);
privateFlags.set(VALID_PADDR|VALID_SIZE);
depth = 0;
accessDelta = 0;
//translateDelta = 0;
}
/**
* The physical address of the request. Valid only if validPaddr
* is set.
*/
Addr _paddr;
/**
* The size of the request. This field must be set when vaddr or
* paddr is written via setVirt() or setPhys(), so it is always
* valid as long as one of the address fields is valid.
*/
unsigned _size;
/** The requestor ID which is unique in the system for all ports
* that are capable of issuing a transaction
*/
MasterID _masterId;
/** Flag structure for the request. */
Flags _flags;
/** Private flags for field validity checking. */
PrivateFlags privateFlags;
/**
* The time this request was started. Used to calculate
* latencies. This field is set to curTick() any time paddr or vaddr
* is written.
*/
Tick _time;
/**
* The task id associated with this request
*/
uint32_t _taskId;
/** The address space ID. */
int _asid;
/** The virtual address of the request. */
Addr _vaddr;
/**
* Extra data for the request, such as the return value of
* store conditional or the compare value for a CAS. */
uint64_t _extraData;
/** The context ID (for statistics, typically). */
int _contextId;
/** The thread ID (id within this CPU) */
ThreadID _threadId;
/** program counter of initiating access; for tracing/debugging */
Addr _pc;
public:
/**
* Minimal constructor. No fields are initialized. (Note that
* _flags and privateFlags are cleared by Flags default
* constructor.)
*/
Request()
: _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
_taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
_extraData(0), _contextId(0), _threadId(0), _pc(0),
translateDelta(0), accessDelta(0), depth(0)
{}
/**
* Constructor for physical (e.g. device) requests. Initializes
* just physical address, size, flags, and timestamp (to curTick()).
* These fields are adequate to perform a request.
*/
Request(Addr paddr, unsigned size, Flags flags, MasterID mid)
: _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
_taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
_extraData(0), _contextId(0), _threadId(0), _pc(0),
translateDelta(0), accessDelta(0), depth(0)
{
setPhys(paddr, size, flags, mid, curTick());
}
Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time)
: _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
_taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
_extraData(0), _contextId(0), _threadId(0), _pc(0),
translateDelta(0), accessDelta(0), depth(0)
{
setPhys(paddr, size, flags, mid, time);
}
Request(Addr paddr, unsigned size, Flags flags, MasterID mid, Tick time,
Addr pc)
: _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
_taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
_extraData(0), _contextId(0), _threadId(0), _pc(0),
translateDelta(0), accessDelta(0), depth(0)
{
setPhys(paddr, size, flags, mid, time);
privateFlags.set(VALID_PC);
_pc = pc;
}
Request(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
Addr pc, int cid, ThreadID tid)
: _paddr(0), _size(0), _masterId(invldMasterId), _time(0),
_taskId(ContextSwitchTaskId::Unknown), _asid(0), _vaddr(0),
_extraData(0), _contextId(0), _threadId(0), _pc(0),
translateDelta(0), accessDelta(0), depth(0)
{
setVirt(asid, vaddr, size, flags, mid, pc);
setThreadContext(cid, tid);
}
~Request() {}
/**
* Set up CPU and thread numbers.
*/
void
setThreadContext(int context_id, ThreadID tid)
{
_contextId = context_id;
_threadId = tid;
privateFlags.set(VALID_CONTEXT_ID|VALID_THREAD_ID);
}
/**
* Set up a virtual (e.g., CPU) request in a previously
* allocated Request object.
*/
void
setVirt(int asid, Addr vaddr, unsigned size, Flags flags, MasterID mid,
Addr pc)
{
_asid = asid;
_vaddr = vaddr;
_size = size;
_masterId = mid;
_pc = pc;
_time = curTick();
_flags.clear(~STICKY_FLAGS);
_flags.set(flags);
privateFlags.clear(~STICKY_PRIVATE_FLAGS);
privateFlags.set(VALID_VADDR|VALID_SIZE|VALID_PC);
depth = 0;
accessDelta = 0;
translateDelta = 0;
}
/**
* Set just the physical address. This usually used to record the
* result of a translation. However, when using virtualized CPUs
* setPhys() is sometimes called to finalize a physical address
* without a virtual address, so we can't check if the virtual
* address is valid.
*/
void
setPaddr(Addr paddr)
{
_paddr = paddr;
privateFlags.set(VALID_PADDR);
}
/**
* Generate two requests as if this request had been split into two
* pieces. The original request can't have been translated already.
*/
void splitOnVaddr(Addr split_addr, RequestPtr &req1, RequestPtr &req2)
{
assert(privateFlags.isSet(VALID_VADDR));
assert(privateFlags.noneSet(VALID_PADDR));
assert(split_addr > _vaddr && split_addr < _vaddr + _size);
req1 = new Request(*this);
req2 = new Request(*this);
req1->_size = split_addr - _vaddr;
req2->_vaddr = split_addr;
req2->_size = _size - req1->_size;
}
/**
* Accessor for paddr.
*/
bool
hasPaddr() const
{
return privateFlags.isSet(VALID_PADDR);
}
Addr
getPaddr() const
{
assert(privateFlags.isSet(VALID_PADDR));
return _paddr;
}
/**
* Time for the TLB/table walker to successfully translate this request.
*/
Tick translateDelta;
/**
* Access latency to complete this memory transaction not including
* translation time.
*/
Tick accessDelta;
/**
* Level of the cache hierachy where this request was responded to
* (e.g. 0 = L1; 1 = L2).
*/
mutable int depth;
/**
* Accessor for size.
*/
bool
hasSize() const
{
return privateFlags.isSet(VALID_SIZE);
}
unsigned
getSize() const
{
assert(privateFlags.isSet(VALID_SIZE));
return _size;
}
/** Accessor for time. */
Tick
time() const
{
assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
return _time;
}
/** Accessor for flags. */
Flags
getFlags()
{
assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
return _flags;
}
/** Note that unlike other accessors, this function sets *specific
flags* (ORs them in); it does not assign its argument to the
_flags field. Thus this method should rightly be called
setFlags() and not just flags(). */
void
setFlags(Flags flags)
{
assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
_flags.set(flags);
}
/** Accessor function for vaddr.*/
bool
hasVaddr() const
{
return privateFlags.isSet(VALID_VADDR);
}
Addr
getVaddr() const
{
assert(privateFlags.isSet(VALID_VADDR));
return _vaddr;
}
/** Accesssor for the requestor id. */
MasterID
masterId() const
{
return _masterId;
}
uint32_t
taskId() const
{
return _taskId;
}
void
taskId(uint32_t id) {
_taskId = id;
}
/** Accessor function for asid.*/
int
getAsid() const
{
assert(privateFlags.isSet(VALID_VADDR));
return _asid;
}
/** Accessor function for asid.*/
void
setAsid(int asid)
{
_asid = asid;
}
/** Accessor function for architecture-specific flags.*/
ArchFlagsType
getArchFlags() const
{
assert(privateFlags.isSet(VALID_PADDR|VALID_VADDR));
return _flags & ARCH_BITS;
}
/** Accessor function to check if sc result is valid. */
bool
extraDataValid() const
{
return privateFlags.isSet(VALID_EXTRA_DATA);
}
/** Accessor function for store conditional return value.*/
uint64_t
getExtraData() const
{
assert(privateFlags.isSet(VALID_EXTRA_DATA));
return _extraData;
}
/** Accessor function for store conditional return value.*/
void
setExtraData(uint64_t extraData)
{
_extraData = extraData;
privateFlags.set(VALID_EXTRA_DATA);
}
bool
hasContextId() const
{
return privateFlags.isSet(VALID_CONTEXT_ID);
}
/** Accessor function for context ID.*/
int
contextId() const
{
assert(privateFlags.isSet(VALID_CONTEXT_ID));
return _contextId;
}
/** Accessor function for thread ID. */
ThreadID
threadId() const
{
assert(privateFlags.isSet(VALID_THREAD_ID));
return _threadId;
}
void
setPC(Addr pc)
{
privateFlags.set(VALID_PC);
_pc = pc;
}
bool
hasPC() const
{
return privateFlags.isSet(VALID_PC);
}
/** Accessor function for pc.*/
Addr
getPC() const
{
assert(privateFlags.isSet(VALID_PC));
return _pc;
}
/**
* Increment/Get the depth at which this request is responded to.
* This currently happens when the request misses in any cache level.
*/
void incAccessDepth() const { depth++; }
int getAccessDepth() const { return depth; }
/**
* Set/Get the time taken for this request to be successfully translated.
*/
void setTranslateLatency() { translateDelta = curTick() - _time; }
Tick getTranslateLatency() const { return translateDelta; }
/**
* Set/Get the time taken to complete this request's access, not including
* the time to successfully translate the request.
*/
void setAccessLatency() { accessDelta = curTick() - _time - translateDelta; }
Tick getAccessLatency() const { return accessDelta; }
/** Accessor functions for flags. Note that these are for testing
only; setting flags should be done via setFlags(). */
bool isUncacheable() const { return _flags.isSet(UNCACHEABLE); }
bool isStrictlyOrdered() const { return _flags.isSet(STRICT_ORDER); }
bool isInstFetch() const { return _flags.isSet(INST_FETCH); }
bool isPrefetch() const { return _flags.isSet(PREFETCH); }
bool isLLSC() const { return _flags.isSet(LLSC); }
bool isPriv() const { return _flags.isSet(PRIVILEGED); }
bool isLockedRMW() const { return _flags.isSet(LOCKED_RMW); }
bool isSwap() const { return _flags.isSet(MEM_SWAP|MEM_SWAP_COND); }
bool isCondSwap() const { return _flags.isSet(MEM_SWAP_COND); }
bool isMmappedIpr() const { return _flags.isSet(MMAPPED_IPR); }
bool isClearLL() const { return _flags.isSet(CLEAR_LL); }
bool isSecure() const { return _flags.isSet(SECURE); }
bool isPTWalk() const { return _flags.isSet(PT_WALK); }
};
#endif // __MEM_REQUEST_HH__